
Lecture #7: Tree Recursion

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 1

Announcements

• Hog Contest and Hog Dice Design released today! Exercise your
strategy- and artistic-design skills on the Game of Hog.

• Please fill out our Week 3 survey (Piazza note @500) to help us
adjust the course effectively.

• There have been questions about what Python features one may use
to complete the Hog project (among other things). Generally, you
can get points for passing the tests by any means on the Python
version used by the autograder. However, you may lose composition
points as a result of straying into features we haven’t gotten to yet.

• You can sign up for the Berkeley Programming Contest on 11 February.
We use this to choose teams for the ACM International Collegiate
Programming Contest, the first round of which is in March. Next
week’s contest will be entirely online, and will use the North American
Qualifier contest. See Piazza post @536 for details and signup link.

• Ask questions on the Piazza thread for today’s lecture (@575).

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 2

Tree Recursion

• The make gasket function is an example of a tree recursion, where
each call makes multiple recursive calls on itself.

• A linear recursion makes at most one recursive call per call.

• A tail recursion has at most one recursive call per call, and it is the
last thing evaluated.

• A linear recursion such as for sum squares produces the pattern
of calls on the left, while make gasket produces the pattern on the
right—an instance of what we call a tree in computer science.

sum squares(3)

sum squares(2)

sum squares(1)

sum squares(0)

calls

make gasket(4,...)

make gasket(3,...) make gasket(3,...) make gasket(3,...)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 3

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if ??:

return None

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 4

https://links.cs61a.org/week3-survey
https://links.cs61a.org/lecture7-qa

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if lowest > highest: # Base Case

return None

elif ??:

return lowest

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 5

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if lowest > highest: # Base Case

return None

elif func(lowest) == 0:

return lowest # Base Case

else:

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 6

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if lowest > highest: # Base Case

return None

elif func(lowest) == 0: # Base Case

return lowest

else: # Inductive (Recursive) Case

return find zero(lowest + 1, highest, func)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 7

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if lowest > highest: # Base Case

return None

elif func(lowest) == 0: # Base Case

return lowest

else: # Inductive (Recursive) Case

return find zero(lowest + 1, highest, func)

What kind of recursion is this?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 8

A Problem

Try to implement the following:

def find zero(lowest, highest, func):

"""Return a value v such that LOWEST <= v <= HIGHEST and

FUNC(v) == 0, or None if there is no such value.

Assumes that FUNC is a non-decreasing function from integers

to integers (that is, if a < b, then FUNC(a) <= FUNC(b)."""

if lowest > highest: # Base Case

return None

elif func(lowest) == 0: # Base Case

return lowest

else: # Inductive (Recursive) Case

return find zero(lowest + 1, highest, func)

What kind of recursion is this?

Tail Recursion

Equivalent iterative solution

while lowest <= highest:

if func(lowest) == 0:

return lowest

lowest += 1

If we get here, returns None

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 9

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest:

return None

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 10

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest:

return None

middle = (lowest + highest) // 2

if func(middle) == 0: # Guess is correct

return middle

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 11

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest:

return None

middle = (lowest + highest) // 2

if func(middle) == 0:

return middle

elif func(middle) < 0: # Guess is too low, result must be > middle

return ??

??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 12

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest:

return None

middle = (lowest + highest) // 2

if func(middle) == 0:

return middle

elif func(middle) < 0:

return find zero(middle + 1, highest, func)

else: # Guess is too high, result must be < middle

return ??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 13

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest: # Base Case

return None

middle = (lowest + highest) // 2

if func(middle) == 0: # Base Case

return middle

elif func(middle) < 0: # Inductive Case

return find zero(middle + 1, highest, func)

else: # Inductive Case

return find zero(lowest, middle - 1, func)

What kind of recursion is this?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 14

Problem, Take 2

Can make it faster by using the fact that the function is non-decreasing.

def find zero(lowest, highest, func):

...

if lowest > highest: # Base Case

return None

middle = (lowest + highest) // 2

if func(middle) == 0: # Base Case

return middle

elif func(middle) < 0: # Inductive Case

return find zero(middle + 1, highest, func)

else: # Inductive Case

return find zero(lowest, middle - 1, func)

What kind of recursion is this?

Tail Recursion:
Two calls, but only one executed.

Equivalent iterative solution

while lowest <= highest:

middle = (lowest + highest) // 2

if func(middle) == 0:

return middle

elif func(middle) < 0:

lowest = middle + 1

else:

highest = middle - 1

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 15

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return ??

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 16

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (??)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 17

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or ??)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 18

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or (func(middle) < 0 and is a zero(middle + 1, highest, func))

or (func(middle) > 0 and is a zero(lowest, middle - 1, func)))

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 19

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or (func(middle) < 0 and is a zero(middle + 1, highest, func))

or (func(middle) > 0 and is a zero(lowest, middle - 1, func)))

What kind of recursion is this?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 20

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or (func(middle) < 0 and is a zero(middle + 1, highest, func))

or (func(middle) > 0 and is a zero(lowest, middle - 1, func)))

What kind of recursion is this? Linear Recursion

Only one of the two calls to is a zero can happen, but if the first one
evaluates to False, we still have to evaluate func(middle)>0. Thus the
recursive call is not the last thing executed.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 21

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or (func(middle) < 0 and is a zero(middle + 1, highest, func))

or is a zero(lowest, middle - 1, func))

What kind of recursion is this?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 22

Side Trip: Base Cases Without If

Can you do this without an if statement (just and/or)?

def is a zero(lowest, highest, func):

"""Return true iff there is a value v such that LOWEST <= v <= HIGHEST

and FUNC(v) == 0. Assumes that FUNC is a non-decreasing function

from integers to integers."""

middle = (lowest + highest) // 2

return lowest <= highest \

and (func(middle) == 0 \

or (func(middle) < 0 and is a zero(middle + 1, highest, func))

or is a zero(lowest, middle - 1, func))

What kind of recursion is this? Tree Recursion

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 23

Finding a Path

• Consider the problem of finding your way through a maze of blocks:

•

×

• From a given starting square, one can move down one row and up to
one column left or right on each step, as long as the square moved
to is unoccupied.

• Problem is to find a path to the bottom layer.

• Diagram shows one path that runs into a dead end (X) and one that
escapes.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 24

Path-Finding Program

• Translating the problem into a function specification:

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

x

y
This grid would be represented
by a predicate M where, e.g,
M(0,0), M(1,0), M(1,2),

not M(1, 1), not M(2,2).

Here, is path(M, 5, 6) is true;
is path(M, 1, 6) and is path(M, 6, 6) are false.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 25

is path Solution (I)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if :

return

elif :

return

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 26

is path Solution (II)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if :

return False

elif :

return True

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 27

is path Solution (III)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif :

return True

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 28

is path Solution (IV)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif y0 == 0:

return True

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 29

is path Solution (V)

def is path(blocked, x0, y0):

"""True iff there is a path of squares from (X0, Y0) to some

square (x1, 0) such that all squares on the path (including first and

last) are unoccupied. BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge.

Each step of a path goes down one row and 1 or 0 columns left or right."""

if blocked(x0, y0):

return False

elif y0 == 0:

return True

else:

return is path(blocked, x0-1, y0-1) \

or is path(blocked, x0, y0-1) \

or is path(blocked, x0+1, y0-1)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 30

Counting the Paths

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

For the previous predicate M, the result of num paths(M, 5, 6) is 1.
For the predicate M2, denoting this grid (missing (7, 1)):

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

the result of num paths(M2, 5, 6) is 5.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 31

num paths Solution (I)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return

elif y0 == 0:

return

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 32

num paths Solution (II)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return 0

elif y0 == 0:

return 1

else:

return

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 33

num paths Solution (III)

def num paths(blocked, x0, y0):

"""Return the number of unoccupied paths that run from (X0, Y0)

to some square (x1, 0). BLOCKED is a predicate such that BLOCKED(x, y)

is true iff the grid square at (x, y) is occupied or off the edge. """

if blocked(x0, y0):

return 0

elif y0 == 0:

return 1

else:

return num paths(blocked, x0-1, y0-1) \

+ num paths(blocked, x0, y0-1) \

+ num paths(blocked, x0+1, y0-1)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 34

A Change in Problem

• Suppose we changed the definition of “path” for the maze problems
to allow paths to go left or right without going down.

• And suppose we changed solutions in the obvious way, so that instead
of just having recursive calls for the three squares

(x0 − 1, y0 − 1), (x0, y0 − 1), and (x0 − 1, y0 + 1),

we added calls for the two other squares

(x0 − 1, y0) and (x0 + 1, y0).

• Will this work? What would happen?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 35

A Change in Problem

• Suppose we changed the definition of “path” for the maze problems
to allow paths to go left or right without going down.

• And suppose we changed solutions in the obvious way, so that instead
of just having recursive calls for the three squares

(x0 − 1, y0 − 1), (x0, y0 − 1), and (x0 − 1, y0 + 1),

we added calls for the two other squares

(x0 − 1, y0) and (x0 + 1, y0).

• Will this work? What would happen?

Infinite recursions, such as

(8, 2) → (9, 2) → (8, 2) → · · ·

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 36

And a Little Analysis

• All our linear recursions took time proportional (in some sense) to
the size of the problem.

• What about is path?

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 37

And a Little Analysis

• All our linear recursions took time proportional (in some sense) to
the size of the problem.

• What about is path?

Each call can spawn three others, for up to y0 “generations.” That
means the number of possible calls could be as many as 3 ** y0—exponential
growth.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 38

Another Recursion Problem: Counting Partitions

• I’d like to know the number of distinct ways of expressing an integer
as a sum of positive integer “parts.”

• To make things more interesting, let’s also limit the size of the
integer parts to some given value:

def num partitions(n, k):

"""Returns number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (Empty sum is 0.)"""

• Example:

6 = 3 + 3
= 3 + 2 + 1
= 3 + 1 + 1 + 1
= 2 + 2 + 2
= 2 + 2 + 1 + 1
= 2 + 1 + 1 + 1 + 1
= 1 + 1 + 1 + 1 + 1 + 1



































































































Each line is one partition

so num partitions(6, 3) is 7.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 39

Identifying the Problem in the Problem

• Again, consider num partitions(6, 3).

• Some partitions will contain the maximum size integer, 3, and the
rest won’t.

• Those that do contain 3 then have various ways to partition the
remaining 3.

3 + 3

3 + 2 + 1

3 + 1 + 1 + 1

• While those that do not contain 3 partition 6 using integers no larger
than 2:

2 + 2 + 2

2 + 2 + 1 + 1

2 + 1 + 1 + 1 + 1

1 + 1 + 1 + 1 + 1 + 1

• These observations generalize, and lead immediately to a solution.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 40

Counting Partitions: Code (I)

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if :

return 0

elif :

return 1

else:

return :

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 41

Counting Partitions: Code (II)

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif :

return 1

else:

return :

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 42

Counting Partitions: Code (III)

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif k == 1:

return 1

else:

return :

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 43

Counting Partitions: Code (IV)

def num partitions(n, k):

"""Number of distinct ways to express N as a sum of positive

integers each of which is <= K, where K > 0. (The empty sum is 0.)"""

if n < 0:

return 0

elif k == 1:

return 1

else:

return num partitions(n - k, k) + num partitions(n, k - 1)

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 44

Recurrences

• The partition problem is a typical example of a mathematical recurrence
relation.

• A familiar oneis the Fibonacci sequence, defined by

fib(n) =















1, if n ∈ {0, 1}
fib(n− 2) + fib(n− 1), if n > 1

• Which of course translates immediately to:
def fib(n):

if n == 0 or n == 1:

return 1

else:

return fib(n-2) + fib(n-1)

• Giving us the sequence (for increasing values of n)

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .

• Again, this is a tree recursion requiring an exponential amount of
computation.

• But as we will see later, both here and in all the examples we’ve seen
so far, dramatic speedup is possible.

Last modified: Fri Feb 5 01:35:14 2021 CS61A: Lecture #7 45

	Lecture #7: Tree Recursion
	Announcements
	Tree Recursion
	A Problem
	Problem, Take 2
	Side Trip: Base Cases Without If
	Finding a Path
	Path-Finding Program
	is_path Solution (I)
	is_path Solution (II)
	is_path Solution (III)
	is_path Solution (IV)
	is_path Solution (V)
	Counting the Paths
	num_paths Solution (I)
	num_paths Solution (II)
	num_paths Solution (III)
	A Change in Problem
	And a Little Analysis
	Another Recursion Problem: Counting Partitions
	Identifying the Problem in the Problem
	Counting Partitions: Code (I)
	Counting Partitions: Code (II)
	Counting Partitions: Code (III)
	Counting Partitions: Code (IV)
	Recurrences

