
CS 61A Structure and Interpretation of Computer Programs
Fall 2017 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except two hand-written 8.5" × 11"
crib sheets of your own creation and the two official CS 61A midterm study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.

(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• Before asking a question, read the announcements on the screen/board. We will not answer your question
directly. If we decide to respond, we’ll add our response to the screen/board so everyone can see the clarification.

• For fill-in-the blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

http://berkeley.edu


2

1. (12 points) By Any Other Name

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. The interactive interpreter displays
the repr string of the value of a successfully evaluated expression, unless it is None. If an error occurs, write
“Error”, but include all output displayed before the error. The first row has been provided as an example.

Assume that you have started python3 and executed the code shown on the left first, then you evaluate each
expression on the right in order. Statements and expressions sent to the interpreter have a cumulative effect.

class Plant:

k = 1

kind = "green"

def __init__(self):

self.k = Plant.k

Plant.k = self.k + 1

if self.k > 3:

Plant.name = lambda t: "tree"

Plant.k = 6

def name(self):

return kind

def __repr__(self):

s = self.name() + " "

return s + str(self.k)

class Flower(Plant):

kind = "pretty"

def __repr__(self):

s = self.smell() + " "

return s + Plant.__repr__(self)

def smell(self):

return "bad"

class Rose(Flower):

def name(self):

return "rose"

def smell(self):

return "nice"

class Garden:

def __init__(self, kind):

self.name = kind

self.smell = kind().smell

def smell(self):

return self.name.kind

f1 = Flower()

f2 = Flower()

Expression Interactive Output
[2, 3] [2, 3]
(1 pt) f1.name() Error

(1 pt) f1.k 1

(1 pt) Plant().k 3

(1 pt) Rose.k 4

(2 pt) Plant() tree 4

(2 pt) Rose() nice rose 6

(2 pt) Garden(Flower).smell() 'bad'

(2 pt) Garden(Flower).name() bad tree 6



Name: 3

2. (8 points) Buy Local

Fill in the environment diagram that results from executing the code below until the entire program is finished,
an error occurs, or all frames are filled. You may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names and parent annotations to frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

• Use box-and-pointer notation for list values. You do not need to write index numbers or the word “list”.

Important: The slash on line 11 means that the return expression continues on the next line.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

def f(L, x):

L[1] = L

def g(c, h, b):

nonlocal x

x = c

if c == 0:

b.append(5)

b = L + b

return h

else:

return \

g(c-1,

lambda: [c, x],

b)

p = g(1, None, [4])

x += 3

return p()

r = f([0, 0], 1)

Global frame

f

r

func f(L, x) [parent=Global]

f1: f [parent= Global ]

L

x 3

p

g

Return value

0
0 1

func g(c, h, b) [parent= f1]

4
0

5
1

func λ () <line 13> [parent=f2]

0
0 1

4
2

5
3

1
0

3
1

f2: g [parent= f1 ]

c 1

h None

b

Return value

f3: g [parent= f1 ]

c 0

h

b

Return value

f4: λ [parent= f2 ]

Return value



4

3. (10 points) Pumpkin Splice Latte

(a) (2 pt) Implement splice, which takes two lists a and b and a non-negative integer k that is less than or
equal to the length of a. It returns the result of splicing b into a at k. That is, it returns a new list containing
the first k elements of a, then all elements of b, then the remaining elements of a.

def splice(a, b, k):

"""Return a list of the first k elements of a, then all of b, then the rest of a.

>>> splice([2, 3, 4, 5], [6, 7], 2)

[2, 3, 6, 7, 4, 5]

"""

return a[:k] + b + a[k:]

(b) (3 pt) Implement all_splice, which returns a list of all the non-negative integers k such that splicing list
b into list a at k creates a list with the same contents as c. Assume that splice is implemented correctly.

def all_splice(a, b, c):

"""Return a list of all k such that splicing b into a at position k gives c.

>>> all_splice([1, 2], [3, 4], [1, 3, 4, 2])

[1]

>>> all_splice([1, 2, 1, 2], [1, 2], [1, 2, 1, 2, 1, 2])

[0, 2, 4]

"""

return [k for k in range(len(a) + 1) if splice(a, b, k) == c]

(c) (5 pt) Implement splink, which takes two Link instances a and b and a non-negative integer k that is less
than or equal to the length of a. It returns a Link instance containing the first k elements of a, then all
elements of b, then the remaining elements of a. The Link class is defined on the midterm 2 study guide.
Important: You may not use len, in, for, list, slicing, element selection, addition, or list comprehensions.

def splink(a, b, k):

"""Return a Link containing the first k elements of a, then all of b, then the rest of a.

>>> splink(Link(2, Link(3, Link(4, Link(5)))), Link(6, Link(7)), 2)

Link(2, Link(3, Link(6, Link(7, Link(4, Link(5))))))

"""

if b is Link.empty:

return a

elif k == 0:

return Link(b.first, splink(a, b.rest, k))

return Link(a.first, splink(a.rest, b, k-1))



Name: 5

4. (11 points) Both Ways

(a) (4 pt) Implement both, which takes two sorted linked lists composed of Link objects and returns whether
some value is in both of them. The Link class is defined on the midterm 2 study guide.
Important: You may not use len, in, for, list, slicing, element selection, addition, or list comprehensions.

def both(a, b):

"""Return whether there is any value that appears in both a and b, two sorted Link instances.

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(4, Link(6))))

False

>>> both(Link(1, Link(3, Link(5, Link(7)))), Link(2, Link(7, Link(9)))) # both have 7

True

>>> both(Link(1, Link(4, Link(5, Link(7)))), Link(2, Link(4, Link(5)))) # both have 4 and 5

True

"""

if a is Link.empty or b is Link.empty:

return False

if a.first > b.first:

a, b = b, a

return a.first == b.first or both(a.rest, b)

(b) (2 pt) Circle the Θ expression that describes the minimum number of comparisons (e.g., <, >, <=,==, or >=
expressions) required to verify that two sorted lists of length n contain no values in common.

Θ(1) Θ(logn) Θ(n) Θ(n2) Θ(2n) None of these

(c) (5 pt) Implement ways, which takes two values start and end, a non-negative integer k, and a list of one-
argument functions actions. It returns the number of ways of choosing functions f1, f2, ..., fj from actions,
such that f1(f2(...(fj(start)))) equals end and j ≤ k. The same action function can be chosen multiple times.
If a sequence of actions reaches end, then no further actions can be applied (see the first example below).

def ways(start, end, k, actions):

"""Return the number of ways of reaching end from start by taking up to k actions.

>>> ways(-1, 1, 5, [abs, lambda x: x+2]) # abs(-1) or -1+2, but not abs(abs(-1))

2

>>> ways(1, 10, 5, [lambda x: x+1, lambda x: x+4]) # 1+1+4+4, 1+4+4+1, or 1+4+1+4

3

>>> ways(1, 20, 5, [lambda x: x+1, lambda x: x+4])

0

>>> ways([3], [2, 3, 2, 3], 4, [lambda x: [2]+x, lambda x: 2*x, lambda x: x[:-1]])

3

"""

if start == end:

return 1

elif k == 0:

return 0

return sum([ways(f(start), end, k - 1, actions) for f in actions])



6

5. (9 points) Autumn Leaves

Definition. A pile (of leaves) for a tree t with no repeated leaf labels is a dictionary in which the label for
each leaf of t is a key, and its value is the path from that leaf to the root. Each path from a node to the root is
either an empty tuple, if the node is the root, or a two-element tuple containing the label of the node’s parent
and the rest of the path (i.e., the path to the root from the node’s parent).

(a) (5 pt) Implement pile, which takes a tree constructed using the tree data abstraction. It returns a pile for
that tree. You may use the tree, label, branches, and is_leaf functions from the midterm 2 study guide.

def pile(t):

"""Return a dict that contains every path from a leaf to the root of tree t.

>>> pile(tree(5, [tree(3, [tree(1), tree(2)]), tree(6, [tree(7)])]))

{1: (3, (5, ())), 2: (3, (5, ())), 7: (6, (5, ()))}

"""

p = {}

def gather(u, parent):

if is_leaf(u):

p[label(u)] = parent

for b in branches(u):

gather(b, (label(u), parent))

gather(t, ())

return p

1 2 7

3 6

5

(b) (4 pt) Implement Path, a class whose constructor takes a tree t constructed by tree and a leaf_label.
Assume all leaf labels of t are unique. When a Path is printed, labels in the path from the root to the leaf of
t with label leaf_label are displayed, separated by dashes. Assume pile is implemented correctly.

class Path:

"""A path through a tree from the root to a leaf, identified by its leaf label.

>>> a = tree(5, [tree(3, [tree(1), tree(2)]), tree(6, [tree(7)])])

>>> print(Path(a, 7), Path(a, 2))

5-6-7 5-3-2

"""

def __init__(self, t, leaf_label):

self.pile, self.end = pile(t), leaf_label

def __str__(self):

path, s = self.pile[self.end], str(self.end)

while path:

path, s = path[1], str(path[0]) + '-' + s

return s

1 2 7

3 6

5


