
CS 61A Structure and Interpretation of Computer Programs
Fall 2019 Final

INSTRUCTIONS

• You have 2 hours and 50 minutes to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except three hand-written 8.5" × 11"
crib sheet of your own creation and the provided CS 61A study guides.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.

Last name

First name

Student ID number

CalCentral email (_@berkeley.edu)

TA

Name of the person to your left

Name of the person to your right

All the work on this exam is my own.
(please sign)

POLICIES & CLARIFICATIONS

• If you need to use the restroom, bring your phone and exam to the front of the room.

• You may use built-in Python functions that do not require import, such as min, max, pow, len, abs, sum, next,
iter, list, sorted, reversed, tuple, map, filter, zip, all, and any.

• You may not use example functions defined on your study guide unless a problem clearly states you can.

• For fill-in-the-blank coding problems, we will only grade work written in the provided blanks. You may only
write one Python statement per blank line, and it must be indented to the level that the blank is indented.

• Unless otherwise specified, you are allowed to reference functions defined in previous parts of the same question.

• You may use the Tree and Link classes defined on Page 2 (left column) of the Midterm 2 Study Guide.

http://berkeley.edu

2

1. (11 points) What Would Python Display

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”, but
include all output displayed before the error. If evaluation would run forever, write “Forever”. To display a
function value, write “Function”. The first two rows have been provided as examples.

The interactive interpreter displays the contents of the repr string of the value of a successfully evaluated
expression, unless it is None.

Assume that you have first started python3 and executed the statements on the left, which cause no errors.
Assume that expressions on the right are executed in the order shown. Expressions evaluated by the interpreter
have a cumulative effect.

def again(x):
def again(y):

nonlocal x
x = x - y
return x

return again(x) + x

n = sum([again(z) for z in range(9)])

s = [[i] for i in range(3)]
s.append(s)
for t in list(s):

t.extend(range(3, 5))

class A:
b = 'one'
def __init__(self, a):

f = self.a
self.a = a[1:]
self.b = 'two'
f(a)

def a(self, b):
print([b, type(self).b])

def __repr__(self):
return str(self.a)

class B(A):
b = 'three'
def a(self, c):

A.a(self, self.b)

f = lambda g, h: lambda p, q: h(g(q), p)
g = f(lambda half: half // 2, pow)

Expression Interactive Output
pow(10, 2) 100

print(4, 5) + 1
4 5
Error

(1 pt) print([1].append(2))

(1 pt) n

(1 pt) len(s)

(2 pt) s[1]

(2 pt) A('four')

(2 pt) B('five')

(2 pt) g(3, 5)

Name: 3

2. (8 points) Protect the Environment
Fill in the environment diagram that results from executing the
code on the right until the entire program is finished, an error
occurs, or all frames are filled.
Important: You may not need to use all of the spaces or frames.
Do not draw frames for calls to built-in functions, such as len.
A complete answer will:

• Use box-and-pointer notation for lists.

• Add all missing names and parent annotations.

• Add all missing values created or referenced.

• Show the return value for each local frame.

Global frame cold

def cold(d):
 day = rain[:1]
 night = lambda: len(day)
 cold = rain.pop()
 day = d
 return night

rain = [3, 4]
d, day = [5], [lambda: d]
cold(rain + [day[0](), rain])()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10

f1: ___________ [parent=____________]

Return Value

func cold(d) [parent=Global]

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

Global frame cold

def cold(d):
 day = rain[:1]
 if d[0] == 3:
 night = lambda: len(day)
 cold = rain.pop()
 day = d
 return night

rain = [3, 4]
d, day = [5], [lambda: d]
cold(rain + [day[0](), rain])()

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

f1: ___________ [parent=____________]

Return Value

func cold(d) [parent=Global]

f2: ___________ [parent=____________]

Return Value

f3: ___________ [parent=____________]

Return Value

4

3. (3 points) The Price is Right

Implement winner, which takes a number price and returns a function. The function takes a list of numbers
guesses and returns the largest guess that is less than or equal to the price.

Important: Fill each blank with only a single name. You may use built-in functions such as min; other built-in
functions are listed on the front of the exam.

def winner(price):
"""Return a function that takes a list and returns the largest element not above price.

>>> ipad = winner(499) # the iPad actual price is $499
>>> ipad([500, 600, 200, 1, 350, 299]) # the closest guess that doesn't go over is $350
350
"""

return lambda guesses: ________(________(lambda g: ________ <= ________, _____________))

4. (4 points) Big Leaf

Implement tops, a generator function that takes a Tree instance t. It yields all leaf labels in t for which the
path from the root to that leaf is strictly increasing. A sequence is strictly increasing if each element is larger
than the previous element. A path from the root to a leaf is a sequence of labels that includes the root label
at the start and the leaf label at the end, along with all labels for nodes in between. The Tree class appears
on Page 2 (left column) of the Midterm 2 study guide.

Important: You may not modify the attributes of any Tree instance or write else, and, or, [, or].

def tops(t):
"""Yield the leaf labels of Tree t at the end of increasing paths.

>>> ex = Tree(1, [Tree(2), Tree(5, [Tree(1, [Tree(3)])]), Tree(3, [Tree(4), Tree(1)])])
>>> list(tops(ex))
[2, 4]
>>> list(tops(Tree(1)))
[1]
>>> list(tops(Tree(1, [Tree(3, [Tree(2)])])))
[]
"""
if t.is_leaf():

yield __

else:

for b in t.branches:

__:

yield from ___

Name: 5

5. (6 points) To-Do Lists

Implement the TodoList and Todo classes. When a Todo is complete, it is removed from all the TodoList
instances to which it was ever added. Track both the number of completed Todo instances in each list and
overall so that printing a TodoList instance matches the behavior of the doctests below. Assume the complete
method of a Todo instance is never invoked more than once.

class TodoList:
"""A to-do list that tracks the number of completed items in the list and overall.

>>> a, b = TodoList(), TodoList()
>>> a.add(Todo('Laundry'))
>>> t = Todo('Shopping')
>>> a.add(t)
>>> b.add(t)
>>> print(a)
Remaining: ['Laundry', 'Shopping'] ; Completed in list: 0 ; Completed overall: 0
>>> print(b)
Remaining: ['Shopping'] ; Completed in list: 0 ; Completed overall: 0
>>> t.complete()
>>> print(a)
Remaining: ['Laundry'] ; Completed in list: 1 ; Completed overall: 1
>>> print(b)
Remaining: [] ; Completed in list: 1 ; Completed overall: 1
>>> Todo('Homework').complete()
>>> print(a)
Remaining: ['Laundry'] ; Completed in list: 1 ; Completed overall: 2
"""
def __init__(self):

self.items, self.complete = [], 0
def add(self, item):

self.items.append(item)

def remove(self, item):

__ += 1

self.items.remove(___)

def __str__(self):
return ('Remaining: ' + str(__) +

' ; Completed in list: ' + str(self.complete) +

' ; Completed overall: ' + str(___))
class Todo:

done = 0
def __init__(self, task):

self.task, self.lists = task, []
def complete(self):

__ += 1
for t in self.lists:

t.remove(self)

6

6. (20 points) Palindromes

Definition. A palindrome is a sequence that has the same elements in normal and reverse order.

(a) (3 pt) Implement pal, which takes a positive integer n and returns a positive integer with the digits of
n followed by the digits of n in reverse order.
Important: You may not write str, repr, list, tuple, [, or].

def pal(n):
"""Return a palindrome starting with n.

>>> pal(12430)
1243003421
"""
m = n

while m:

n, m = ____________________________________ , ____________________________________

return n

(b) (4 pt) Implement contains, which takes non-negative integers a and b. It returns whether all of the
digits of a also appear in order among the digits of b.
Important: You may not write str, repr, list, tuple, [, or].

def contains(a, b):
"""Return whether the digits of a are contained in the digits of b.

>>> contains(357, 12345678)
True
>>> contains(753, 12345678)
False
>>> contains(357, 37)
False
"""
if a == b:

return True

if __ > ___:

return False

if __ == __:

return contains(_______________________________ , _______________________________)

else:

return contains(_______________________________ , _______________________________)

Name: 7

(c) (6 pt) Implement big, a helper function for biggest_palindrome. The biggest_palindrome function
takes a non-negative integer n and returns the largest palindrome integer with an even number of digits
that appear among the digits of n in order. If there is no even-length palindrome among the digits of n,
then biggest_palindrome(n) returns 0. You may call pal and contains.
Important: You may not write str, repr, list, tuple, [, or].

def biggest_palindrome(n):
"""Return the largest even-length palindrome in n.

>>> biggest_palindrome(3425534)
4554
>>> biggest_palindrome(126130450234125)
21300312
"""
return big(n, 0)

def big(n, k):
"""A helper function for biggest_palindrome."""

if n == 0:

return 0

choices = [big(_________________ , k) , big(_________________ , _________________)]

if contains(k, __):

__

return max(choices)

(d) (1 pt) Circle the term that fills in the blank: the is_palindrome function defined below runs in ____
time in the length of its input.

Constant Logarithmic Linear Quadratic Exponential None of these

def is_palindrome(s):
"""Return whether a list of numbers s is a palindrome."""
return all([s[i] == s[len(s) - i - 1] for i in range(len(s))])

Assume that len runs in constant time and all runs in linear time in the length of its input. Selecting
an element of a list by its index requires constant time. Constructing a range requires constant time.

8

(e) (6 pt) Implement outer, a helper function for palinkdrome. The palinkdrome function takes a positive
integer n and returns a one-argument function that, when called repeatedly n times, returns a Link
containing the sequence of arguments to the repeated calls followed by that sequence in reverse order.
The Link class appears on Page 2 (left column) of the Midterm 2 study guide.

def palinkdrome(n):
"""Return a function that returns a palindrome starting with the args of n repeated calls.

>>> print(palinkdrome(3)(5)(6)(7))
<5 6 7 7 6 5>
>>> print(palinkdrome(1)(4))
<4 4>
"""
return outer(Link.empty, n)

def outer(r, n):

def inner(k):

s = Link(k, __)

if n == 1:

t = __

while s is not Link.empty:

t, s = Link(________________, ________________) , ________________

return t

else:

return __

return __

Name: 9

7. (10 points) Mull It Over
Uh oh! Someone evaluated (define * +). Now (* 3 2) evaluates to 5 instead of 6! Let’s fix it.
Important: Answer all questions on this page without calling the built-in multiplication procedure.

(a) (3 pt) Implement mulxy, which multiplies integers x and y. Hint: (- 2) evaluates to -2.

;; multiply x by y (without using the * operator).
;; (mulxy 3 4) -> 12 ; 12 = 3 + 3 + 3 + 3
;; (mulxy (- 3) (- 4)) -> 12 ; 12 = - (-3 + -3 + -3 + -3)
(define (mulxy x y)

(cond ((< y 0) (- ___))

((= y 0) 0)

(else (__________________ x (mulxy x __________________________________)))))
(b) (2 pt) Implement mul-expr, which takes an expression e that contains only calls to * and numbers. It

returns the normal value of e under a Scheme interpreter with an unmodified * operator that multiplies.
You may call the mul procedure defined below.
Important: Fill each blank with only a single symbol.

;; Multiply together a list of numbers.
;; (mul '(2 3 4 2)) -> 48
(define (mul s) (reduce mulxy s))

;; Evaluate an expression with only calls to * and numbers.
;; (mul-expr '(* (* 1 2) (* 3 (* 4 1 1) 2))) -> 48
(define (mul-expr e)

(if (number? e) e

(_________________ (_________________ _________________ (_________________ e)))))
(c) (5 pt) Implement *-to-mul, which takes any expression e. It returns an expression like e, but with

all calls to * replaced with calls to mul. Note that * takes an arbitrary number of arguments, while mul
always takes exactly one argument: a list of numbers. You should account for this difference.

;; Convert all calls to * to calls to mul in expression e.
;; (eval (*-to-mul '(* 1 (+ 2 3) (+ 4 5 (* 6 1))))) -> 75
(define (*-to-mul e)

(if (not (list? e)) e

(let ((op ______________) (rest ___))

(if (equal? op '*)

(list ___)

(cons op rest)))))

10

8. (4 points) Live Stream

Implement up, which takes an infinite stream s with no largest element. (That means for every element there
is some larger element later in the stream.) It returns a stream of all elements of s that are larger than every
previous element in s.

;; Scale all elements of a stream by k.
(define (scale s k) (cons-stream (* (car s) k) (scale (cdr-stream s) k)))

;; A stream of 1 -2 4 -8 16 -32 64 -128 256 -512 ...
(define twos (cons-stream 1 (scale twos -2)))

;; Return a stream of all elements in s larger than all previous elements.
;; (up twos) -> a stream of 1 4 16 64 256 ...
(define (up s)

(define (rest t)

(if (> (car t) (car s))

__

__))

(cons-stream ___________________ __))

9. (3 points) Macro Lens

Implement partial, a macro that takes a call expression that is missing its last operand. A call to partial
evaluates to a one-argument procedure that takes a value y and returns the result of evaluating call extended
to include an additional operand y at the end.

;; A macro that creates a procedure from a partial call expression missing the last operand.
;; (define add-two (partial (+ 1 1))) -> (lambda (y) (+ 1 1 y))
;; (add-two 3) -> 5 by evaluating (+ 1 1 3)
;;
;; (define eq-5 (partial (equal? (+ 2 3)))) -> (lambda (y) (equal? (+ 2 3) y))
;; (eq-5 (+ 3 2)) -> #t by evaluating (equal? (+ 2 3) 5)
;;
;; ((partial (append '(1 2))) '(3 4)) -> (1 2 3 4)
(define-macro (partial call)

`(lambda (y) ___)

Name: 11

10. (6 points) Big Game

The scoring table has three columns, a player column of strings, a points column of integers, and a quarter
column of integers. The players table has two columns, a name column of strings and a team column of strings.
Complete the SQL statements below so that they would compute the correct result even if the rows in these
tables were different than those shown.

Important: You may write anything in the blanks including keywords such as WHERE or ORDER BY.

CREATE TABLE scoring AS
SELECT "Donald Stewart" AS player, 7 AS points, 1 AS quarter UNION
SELECT "Christopher Brown Jr.", 7, 1 UNION
SELECT "Ryan Sanborn", 3, 2 UNION
SELECT "Greg Thomas", 3, 2 UNION
SELECT "Cameron Scarlett", 7, 3 UNION
SELECT "Nikko Remigio", 7, 4 UNION
SELECT "Ryan Sanborn", 3, 4 UNION
SELECT "Chase Garbers", 7, 4;

CREATE TABLE players AS
SELECT "Ryan Sanborn" AS name, "Stanford" AS team UNION
SELECT "Donald Stewart", "Stanford" UNION
SELECT "Cameron Scarlett", "Stanford" UNION
SELECT "Christopher Brown Jr.", "Cal" UNION
SELECT "Greg Thomas", "Cal" UNION
SELECT "Nikko Remigio", "Cal" UNION
SELECT "Chase Garbers", "Cal";

(a) (3 pt) Complete the SQL statement below to select a one-column table of quarters in which more than
10 total points were scored.

SELECT _____________________________ FROM ___

GROUP BY quarter __;

1
4

(b) (3 pt) Complete the SQL statement below to select a two-column table of the points scored by each team.
Assume that no two players have the same name.

SELECT _________________ , __________________ FROM __

WHERE ___;

Cal 24
Stanford 20

(The statement below is not part of any question on the exam.)

SELECT "Thank you, " || name FROM players WHERE SUBSTR(name, 5) = "Chase";

12

11. (0 points) Optional Final Thought

Write a SQL statement that describes your thoughts or feelings about CS 61A.

