
CS 61A Structure and Interpretation of Computer Programs
Spring 2017 Test 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is open book, open notes, closed computer, closed calculator.

• Mark your answers on the exam itself. We will not grade answers written on scratch paper.
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Reference Material.

# Linked Lists (implementations not shown)

empty = ... # The empty list

def link(first, rest):

"""A linked list whose first element is FIRST and the linked list

REST is the rest of the list."""

def first(lnklst):

"""The first item in linked list LNKLST."""

def rest(lnklst):

"""The list following the first item in linked list LNKLST."""

def isempty(lnklst):

"""True if LNKLST is empty."""

def print_link(lnklst):

"""Prints the linked list LNKLST in the format (v0, v1, ...)."""
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1. (12 points) Evaluate These!

For each of the expressions in the table below, write the output displayed by the interactive Python interpreter
when the expression is evaluated. The output may have multiple lines. If an error occurs, write “Error”. If
an expression yields (or prints) a function, write “<Function>”. No answer requires more than 3 lines. (It’s
possible that all of them require even fewer.) The first two rows have been provided as examples.

The interactive interpreter displays the value of a successfully evaluated expression, unless it is None, plus all
values passed to print.

Assume that python3 has executed the statements on the left:

def w(L):

if len(L) == 0:

return L

elif L[0] in L[1:]:

return w(L[1:])

else:

return [L[0]] + w(L[1:])

def reduce(f, L, init):

if len(L) == 0:

return init

else:

return reduce(f, L[1:],

f(init, L[0]))

Expression Interactive Output
pow(2, 3) 8

print(4, 5) + 1
4 5
Error

1 + (4 and 6) + (5 or 0) + (0 and 8)

f = lambda x: x

g = lambda y: f(g)

g(2)(2)

0 and print(2)

range(1,20)[-2]

w([1, 2, 3, 1, 8, 2])

f = lambda x: lambda y: \

lambda z: x+y+z

reduce(lambda g, x: g(x),

[1, 2, 3], f)
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2. (12 points) Environmental Policy

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You may not need to use all of the spaces, frames, or

blank lambda function values.

A complete answer will:

• Add all missing names and parent annotations to all local frames.

• Add all missing values created or referenced during execution.

• Show the return value for each local frame.

1

2

3

4

5

def h(y):

return g(lambda: y)

def g(f):

return f()()

h(lambda: 3)

Global frame

h

g

func h(y) [parent= ]

func g(f) [parent= ]

func λ () <line > [parent= ]

func λ () <line > [parent= ]

func λ () <line > [parent= ]

func λ () <line > [parent= ]

f1: [parent= ]

Return value

f2: [parent= ]

Return value

f3: [parent= ]

Return value

f4: [parent= ]

Return value



Name: 5

(b) (6 pt) The environment diagram below corresponds to the execution of a certain program. The frames shown
were created in top-to-bottom order, and at one point they were all simultaneously active (their functions
had not returned). The diagram shows the situation right after all the functions have returned. Write a
Python program whose execution corresponds to this environment diagram. Many answers are possible, but
as a guideline, fewer than 10 lines are really needed. In any case, your answer must not create extra frames
or additional functions.

Global frame

a

k

z 3

func a() [parent=Global]

func k(b) [parent=Global]

f1: a [parent=Global]

g

Return value 3

func g() [parent= f1]

f2: k [parent=Global]

b

Return value 3

f3: g [parent=f1]

Return value 3

Write solution here.
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3. (4 points) Sequence Checking

Fill in the following function so that it fulfills its comment.

def make_checker(relation, start, end):

"""Assumes that START and END are integers and RELATION is a two-argument

function that returns true/false values. Returns a function that, given

a function f as input, returns True if RELATION returns true for

all adjacent values in the sequence f(START), f(START+1), ... f(END-1).

For example, eq_chk, below, checks that the values returned by

its argument function for values 0-4 are all equal, while up_chk checks

that the values returned by the argument function are in strictly

increasing order.

>>> eq_chk = make_checker(lambda x, y: x == y, 0, 5) # Check all equal

>>> eq_chk(lambda x: 3)

True

>>> eq_chk(lambda x: x)

False

>>> up_chk = make_checker(lambda x, y: x < y, 0, 5) # Check increasing

>>> up_chk(lambda x: x)

True

>>> up_chk(lambda x: 3)

False

"""
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4. (1 points) Extra

In the formula a = 0.4 + 0.3 · 2m (m = − inf, 0, 1, 2, . . . ), what does a refer to?

5. (4 points) Insert

Fill in the following function to fulfill its comment. The linked-list interface that you should use is given on
page ??. Warning: this problem deals with linked lists, NOT Python lists or tuples. You cannot use +, len(),
indexing (L[k]), or list construction ([...]).

def link_insert(lnklst, value, before):

"""Return a linked list identical to LNKLST, but with VALUE inserted just

before the first occurrence of BEFORE in the list, if any. The returned

list is identical to LNKLST if BEFORE does not occur in LNKLST.

The operation is non-destructive.

>>> L = link(2, link(3, link(7, link(1))))

>>> print_link(L)

(2, 3, 7, 1)

>>> Q = link_insert(L, 19, 7)

>>> print_link(Q)

(2, 3, 19, 7, 1)

>>> print_link(link_insert(L, 19, 20))

(2, 3, 7, 1)

"""

if _________________________________________________________________:

return _________________________________________________________

elif _______________________________________________________________:

return _________________________________________________________

else:

return _________________________________________________________



8

6. (4 points) Longest Nondecreasing Suffix

Consider a function up_suffix that is supposed to return the longest suffix of a Python list of integers such
that the suffix consists of nondecreasing values. For example, when applied to

[1, 2, 3, 4, 5, 1, 3, 3, 4]

it should yield [1, 3, 3, 4].

Fill in the following function to do this:

def up_suffix(L):

"""Returns the longest non-descending suffix of Python list L. """

def longest_suffix_start(L):

"""The index in L of the beginning of the longest nondecreasing suffix

of L. For the empty list, returns 0.

>>> longest_suffix_start([1, 2, 3, 4, 5, 1, 3, 3, 4])

5

>>> longest_suffix_start([2, 4, 6, 8, 10])

0

"""

k = ____________________________________________________________

while __________________________________________________________:

____________________________________________________________

return _________________________________________________________

return L[ ______________________________________________________ : ]
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7. (4 points) Post’s Problem

Consider two Python lists of strings, where the two lists have equal length, N :

A = [ "a", "ab", "bba"]

B = [ "baa", "aa", "bb" ]

Is there a sequence of integers—i1, i2, . . . im—where m > 0 and 0 ≤ ik < N for all k, such that

A[i1] +A[i2] + · · ·+A[im] = B[i1] +B[i2] + · · ·+B[im]?

This is called the Post Correspondence Problem. For this A and B, the answer is yes for m = 4: (2, 1, 2, 0),
because

A[2] + A[1] + A[2] + A[0] == "bba" + "ab" + "bba" + "a" == "bbaabbbaa"

B[2] + B[1] + B[2] + B[0] == "bb" + "aa" + "bb" + "baa" == "bbaabbbaa"

On the other hand, the answer is no if we limit m to 3 (so we cannot add more than three strings), or if we
shorten the lists by removing A[0] and B[0]. Fill in the following function to determine whether there is a
solution.

def correspond(A, B, M):

"""Assuming A and B are lists of strings with len(A) == len(B), and M

is an integer, returns true iff there is a sequence of indices into A

and B, (i1, i2, ..., im), where 1 <= m <= M, such that

A[i1] + A[i2] + ... + A[im] == B[i1] + B[i2] + ... + B[im].

"""

N = len(A)

def can_correspond(sa, sb, M):

"""Return true iff there is some sequence of indices into A and

B, (i1, i2, ..., im), where 1 <= m <= M, such that

SA + A[i1] + A[i2] + ... + A[im] == SB + B[i1] + B[i2] + ... + B[im].

Assumes M is a non-negative integer.

"""

if ___________________________________________________________:

return False

else:

for i in _________________________________________________:

ta = _________________________________________________

tb = _________________________________________________

if ta == tb:

return True

elif can_correspond(__________, ___________, ___________):

return True

return False

return can_correspond("", "", M)




