
CS 61A Sample Exam.
Spring 2020 Final Exam

INSTRUCTIONS

This is your exam. Complete it either at exam.cs61a.org or, if that doesn’t work, by emailing course staff with your
solutions before the exam deadline.

This exam is intended for the student with email address <EMAILADDRESS>. If this is not your email address, notify
course staff immediately, as each exam is different. Do not distribute this exam PDF even after the exam ends, as
some students may be taking the exam in a different time zone.

For questions with circular bubbles, you should select exactly one choice.

You must choose either this option

Or this one, but not both!

For questions with square checkboxes, you may select multiple choices.

2 You could select this choice.

2 You could select this one too!

You may start your exam now. Your exam is due at <DEADLINE> Pacific Time. Go to the next page
to begin.

exam.cs61a.org

Exam generated for <EMAILADDRESS> 2

Preliminaries

You can complete and submit these questions before the exam starts.

(a) What is your full name?

(b) What is your student ID number?

(c) What is your @berkeley.edu email address?

(d) Who is your TA? (See cs61a.org/staff.html for pictures.)

Exam generated for <EMAILADDRESS> 3

1. (8.0 points) What Does This Function Do?

Complete the description of each function so that it correctly describes the function’s behavior.

(a) (4.0 points)

def count(n, t, k):
if n == 0:

return int(t <= 0)
elif k > n:

return 0
else:

a = count(n, t, k + 1)
b = count(n-k, t-1, k)
return a + b

Hint : int(False) evaluates to 0 and int(True) evaluates to 1.

As in count_partitions from the Midterm 2 Study Guide, a “way of summing to n using parts” is a sum
of zero or more positive integers (the parts) that appear in non-decreasing order and total n. For example,
1 + 2 is a way of summing to 3 using 2 parts, but 2 + 1 is not.

Complete this description: count(n, t, k) counts the ways of summing to n using . . .

i. (2.0 pt)

 . . . at least t parts . . .

. . . at most t parts . . .

. . . at least k parts . . .

. . . at most k parts . . .

ii. (2.0 pt)

. . . that are all less than or equal to t.

. . . that are all greater than or equal to t.

. . . that are all less than or equal to k.

 . . . that are all greater than or equal to k.

Exam generated for <EMAILADDRESS> 4

(b) (4.0 points)

def prime(n):
"""Return the smallest prime number larger than n.

>>> prime(2)
3
>>> prime(8)
11
>>> prime(prime(8))
13
>>> prime(prime(prime(8)))
17
"""
<implementation omitted>

def again():
f, g = prime, prime
def h(x):

nonlocal g
g, h = (lambda h: lambda y: h(f(y)))(g), g(x)
return h

return h

Assume that prime is implemented correctly and behaves as its docstring describes.

Below, applying prime to x repeatedly 3 times means evaluating prime(prime(prime(x))).

Complete this description: again() returns a function h that takes a number x and returns the result
of applying prime to x repeatedly . . .

i. (2.0 pt)

. . . k-1 times . . .

 . . . k times . . .

. . . k+1 times . . .

. . . 2 ** k times . . .

ii. (2.0 pt)

 . . . where k is the number of times that this h function has been called.

. . . where k is the number of times that prime has been called during a call to this h function.

. . . where k is the total number of times that all h functions returned by calling again() (perhaps
multiple times) have been called throughout the whole program.

. . . where k is the total number of times that prime has been called (perhaps in other ways than
by this h function) throughout the whole program.

Exam generated for <EMAILADDRESS> 5

2. (12.0 points) Mind Your P’s and Q’s

(a) (6.0 points)

Fill in each blank in the code example below so that its environment diagram is the following:

https://i.imgur.com/xPJsDGg.png

p = [[2], [2, 2]]

p[0]._________(_________)
(a) (b)

q = [_________, _________]
(c) (d)

p_________ = 3
(e)

i. (1.0 pt) Which of the following names could complete blank (a)?

add

pop

 append

extend

ii. (1.0 pt) Which of the following expressions could complete blank (b)?

p

p[0]

 p[1]

p[:]

iii. (1.0 pt) Which of the following expressions could complete blank (c)?

 p.pop()

p[1]

p[0]

p[:1]

Exam generated for <EMAILADDRESS> 6

iv. (1.0 pt) Which of the following expressions could complete blank (d)?

p.pop()

p[1]

 p[0]

p[:1]

v. (2.0 pt) Write code that could complete blank (e).

[0][1][1]

Exam generated for <EMAILADDRESS> 7

(b) (6.0 points)

Fill in each blank in the code example below so that its environment diagram is the following:

https://i.imgur.com/qk83xRw.png

def r(rr):

if rr:

def r(week):

return [_________, rr]
(a)

rr = _________
(b)

return r(_________)
(c)

r(5)_________
(d)

Note: Line numbers for lambda functions have been omitted intentionally.

Exam generated for <EMAILADDRESS> 8

i. (1.0 pt) Write an expression that could complete blank (a).

week

ii. (1.0 pt) Write an expression that could complete blank (b).

1

iii. (2.0 pt) Write an expression that could complete blank (c).

lambda r: [r]

iv. (2.0 pt) Which of these could complete blank (d)?

.pop()([4])

.pop()(4)

[0](4)

 [0]([4])

Exam generated for <EMAILADDRESS> 9

3. (12.0 points) Bounds

Definitions: A bound is a two-element tuple of numbers in which element 0 is smaller than element 1. A
number t is contained in bound b if b[0] < t and t < b[1]. How tight a bound b is around a number t
describes the largest absolute distance between t and one of the numbers in b. For example, the tightness of
bound (1, 7) around 6 is 5 because the absolute difference between 6 and 1 is 5.

(a) (2.0 points)

Implement minimum, which takes a list s and a one-argument function key. It returns the value in s for
which key produces the smallest return value. If s is empty, minimum returns None. If more than one value
in s produces a key value at least as small as all others, then minimum returns the first.

def minimum(s, key):
"""Return the first value v in s for which key(v) is less than or equal to
key(w) for all values w in s. Return None if s is empty.

>>> minimum([5, 4, 3, 2, 1], lambda x: abs(x - 3.1)) # Closest to 3.1
3
>>> a = [3]
>>> minimum([[5], [4], a, [3], [2], [1]], lambda x: abs(x[0] - 3.1)) is a
True
"""
if not s:

return None

m = s[0]

for v in s[1:]:

if _________:
(a)

m = v

return m

i. (2.0 pt) What expression completes blank (a)?

Important: You may not call the built-in min or max functions for this blank.

key(v) < key(m)

Exam generated for <EMAILADDRESS> 10

(b) (4.0 points)

Implement tightest, which takes a list of bounds and a number t. It returns the first bound in bounds
that both contains t and is the most tight around t. If no bound in bounds contains t, tightest returns
None.

Assume minimum is implemented correctly.

def tightest(bounds, t):
"""Return the tightest bound around t in bounds.

>>> bounds = [(2, 6), (3, 4), (1, 5), (1, 6), (0, 4)]
>>> tightest(bounds, 3)
(1, 5)
>>> tightest(bounds, 3.1)
(3, 4)
>>> tightest(bounds, 5)
(2, 6)
>>> tightest(bounds, 2)
(0, 4)
>>> print(tightest(bounds, 6))
None
"""
return minimum([b for b in bounds if _________],

(a)

lambda b: _________)
(b)

i. (2.0 pt) What expression completes blank (a)?

Important: You may not call the built-in min or max functions for this blank.

b[0] < t and b[1] > t

ii. (2.0 pt) What expression completes blank (b)?

 max(t - b[0], b[1] - t)

abs(t - max(b))

[abs(t - x) for x in b][0]

abs(max([t - x for x in b]))

Exam generated for <EMAILADDRESS> 11

(c) (6.0 points)

Implement nest, which takes a list of bounds. It returns the largest number of bounds in the list that all
overlap with each other.

def overlap(a, b):
"""Return whether there is some number t contained in both a and b.

>>> overlap([2, 4], [1, 3]) # 2.5 is contained in both bounds.
True
>>> overlap([1, 3], [2, 4]) # 2.5 is contained in both bounds.
True
>>> overlap([2, 4], [1, 2]) # No number is contained in both bounds.
False
"""
return a[0] < b[1] and b[0] < a[1]

def nest(bounds):
"""Return the maximum number of bounds that all contain the same number.

>>> bounds = [(2, 6), (3, 4), (1, 5), (1, 6), (0, 4), (0, 3)]
>>> nest(bounds) # All but the last contain 3.1, so these 5 all overlap with each other.
5
>>> bounds = [(1, 5), (5, 7), (7, 9), (1, 9)]
>>> nest(bounds) # Any of the first three overlaps with the last, but not with each other.
2
>>> bounds = [(1, 9), (1, 5), (5, 7), (7, 9)]
>>> nest(bounds) # The first overlaps with any of the last three.
2
>>> bounds = [(2, 4), (1, 3), (1, 2)]
>>> nest(bounds) # Any two consecutive bounds overlap, but the first & last do not overlap.
2
"""
if not bounds:

return 0

rest = [b for b in bounds[1:] if overlap(b, _________)]
(a)

return max(nest(_________), 1 + _________)
(b) (c)

i. (2.0 pt) What expression completes blank (a)?

bounds[0]

ii. (2.0 pt) What expression completes blank (b)?

bounds

 bounds[1:]

rest

bounds[0] + rest

Exam generated for <EMAILADDRESS> 12

iii. (2.0 pt) What expression completes blank (c)?

nest(rest)

Exam generated for <EMAILADDRESS> 13

4. (12.0 points) What Does This Function or Method Do?

Complete the description of each function or method so that its behavior is described correctly.

(a) (4.0 points) Game

def time(hour, minute, second):
"""Create a time value using data abstraction."""
<implementation omitted>

def format(t):
"""Return a string that formats a time such that the hours, minutes,
and seconds all have two digits.

>>> format(time(3, 30, 5))
'03:30:05'
"""
<implementation omitted>

class Game:
time = None
def __init__(self, time):

Game.time = time
def __str__(self):

return format(self.time)

Assume that time takes numbers that can represent the hours, minutes, and seconds of a valid time and
returns a value that can be passed to format. Assume that format behaves as described in its docstring.
A Game instance is constructed from the return value of a call to time.

Complete this description:

print(Game(time(2, 10, 0)), Game(time(3, 0, 0))) will display . . .

i. (4.0 pt)

. . . 02:10:00 03:00:00

 . . . 03:00:00 03:00:00

. . . '02:10:00' '03:00:00'

. . . '03:00:00' '03:00:00'

. . . Game(time(2, 10, 0)) Game(time(3, 0, 0))

. . . Game(time(3, 0, 0)) Game(time(3, 0, 0))

. . . 'Game(time(2, 10, 0))' 'Game(time(3, 0, 0))'

. . . 'Game(time(3, 0, 0))' 'Game(time(3, 0, 0))'

Exam generated for <EMAILADDRESS> 14

(b) (4.0 points) Mystery

def mystery(t):
def e(r, y):

assert type(r.label) == int
myst = [e(b, max(y, r.label)) for b in r.branches]
if r.label > y:

myst.append(r.label)
return sum(myst)

return e(t, 0)

Assume that mystery is called on a Tree instance with integer labels. Assume that the sum of an empty
set of labels is 0. The Tree class is defined on the Midterm 2 Study Guide.

An ancestor is a parent, or parent’s parent, or parent’s parent’s parent, etc.

A descendant is a child, or child’s child, or childs’ child’s child, etc.

Complete this description: mystery(t) returns the sum of . . .

i. (2.0 pt)

. . . all leaf labels in t . . .

. . . all labels in t . . .

. . . all positive leaf labels in t . . .

 . . . all positive labels in t . . .

ii. (2.0 pt)

. . . that are either the root label or larger than their parent label.

 . . . that are either the root label or larger than all their ancestor labels.

. . . that are either leaf labels or larger than all their child labels.

. . . that are either leaf labels or larger than all their descendant labels.

http://cs61a.org/assets/pdfs/61a-mt2-study-guide.pdf

Exam generated for <EMAILADDRESS> 15

(c) (4.0 points) Add

class Add:
s = 2
def __init__(self, s):

assert isinstance(s, Link) or s is Link.empty
self.t = s
s = self.s + 1

def this(self, v):
def f(t):

if t is Link.empty or t.first >= v:
return Link(v, t)

else:
return Link(t.first, f(t.rest))

for i in range(self.s):
self.t = f(self.t)

Assume Add is called on Link.empty or a Link instance containing numbers, and the this method is called
on a number. The Link class is defined on the Midterm 2 Study Guide.

Complete this description: For an instance a = Add(s), the expression a.this(v) inserts v into a.t
. . .

i. (2.0 pt)

. . . once . . .

 . . . twice . . .

. . . three times . . .

. . . a number of times equal to two plus the number of Add instances ever constructed . . .

ii. (2.0 pt)

 . . . at the latest position within a.t where v is larger than all previous elements in a.t.

. . . at the earliest position within a.t where v is smaller than all subsequent elements in a.t.

. . . at the latest position within a.t where v is smaller than all previous elements in a.t.

. . . at the earliest position within a.t where v is larger than all subsequent elements in a.t.

http://cs61a.org/assets/pdfs/61a-mt2-study-guide.pdf

Exam generated for <EMAILADDRESS> 16

5. (6.0 points) Multiples

Implement multiples, a generator function that takes positive integers k and n. It yields all positive multiples
of k that are smaller than n in decreasing order.

def multiples(k, n):
"""Yield all positive multiples of k less than n in decreasing order.

>>> list(multiples(10, 50))
[40, 30, 20, 10]
>>> list(multiples(3, 25))
[24, 21, 18, 15, 12, 9, 6, 3]
>>> list(multiples(3, 3))
[]
"""
if _________:

(a)

for eye in _________:
(b)

yield _________
(c)

yield k

(a) (2.0 pt) Which expression completes blank (a)?

 k < n

k > 0

n > 0

k > 0 and n > 0

(b) (2.0 pt) Which expression completes blank (b)?

multiples(k, n // 10)

multiples(k, n - 1)

 multiples(k, n - k)

multiples(k, n / k)

(c) (2.0 pt) What expression completes blank (c)?

eye + k

Exam generated for <EMAILADDRESS> 17

6. (16.0 points) Meeting in Place

Implement the methods of the User and Meeting classes as follows:

• When a User decides to attend a Meeting for the first time, if they are the host of the Meeting, they
will be added to the end of the joined list; otherwise they will be added to the end of the pending list.

• When a User attempts to attend a meeting again, they are not added to any list. A string is returned
stating that the User is already attending.

• A Meeting’s admit method takes a function f that takes a User and returns whether they should be
admitted. The admit method moves all pending Users for which f returns a true value from the pending
list to the end of the joined list.

class User:
"""A User can attend a Meeting.

>>> john = User('denero@berkeley')
>>> oski = User('oski@berkeley')
>>> jack = User('jack@junioruniversity')
>>> section = Meeting(john)
>>> for x in [john, oski, jack]:
... x.attend(section)
>>> section.joined
[User('denero@berkeley')]
>>> section.pending
[User('oski@berkeley'), User('jack@junioruniversity')]

>>> oski.attend(section)
oski@berkeley is already attending

>>> section.admit(lambda x: 'berkeley' in x.identifier)
>>> section.joined
[User('denero@berkeley'), User('oski@berkeley')]
>>> section.pending
[User('jack@junioruniversity')]

>>> oski.attend(section)
oski@berkeley is already attending
>>> User('denero@berkeley').attend(section) # A different user with the same identifier can attend
>>> section.pending
[User('jack@junioruniversity'), User('denero@berkeley')]
"""
def __init__(self, identifier):

self.identifier = identifier

def attend(self, meeting):

if _________ in _________:
(a) (b)

print(self.identifier, 'is already attending')

else:

users = _________
(c)

Exam generated for <EMAILADDRESS> 18

if _________:
(d)

users = _________
(e)

users.append(_________)
(f)

def __repr__(self):

return 'User(' + repr(self.identifier) + ')'

class Meeting:
"""A Meeting can admit pending Users."""
def __init__(self, host):

self.pending = []
self.joined = []
self.host = host

def admit(self, f):

for x in self.pending:

if _________:
(g)

self.joined.append(x)

self.pending = _________
(h)

(a) (2.0 pt) What expression completes blank (a)?

self

(b) (2.0 pt) Which expression completes blank (b)?

 meeting.pending + meeting.joined

[meeting.pending, meeting.joined]

meeting.pending.extend(meeting.joined)

meeting.pending.append(meeting.joined)

(c) (2.0 pt) What expression completes blank (c)?

meeting.pending

Exam generated for <EMAILADDRESS> 19

(d) (2.0 pt) Which expression completes blank (d)?

self.identifier in meeting

self in meeting

self.identifier in meeting.host

self in meeting.host

self.identifier in meeting.joined

self in meeting.joined

self.identifier == meeting.host

 self is meeting.host

(e) (2.0 pt) What expression completes blank (e)?

meeting.joined

(f) (2.0 pt) What expression completes blank (f)?

self

(g) (2.0 pt) What expression completes blank (g)?

f(x)

(h) (2.0 pt) What expression completes blank (h)?

[x for x in self.pending if not f(x)]

Exam generated for <EMAILADDRESS> 20

7. (14.0 points) Apply Here

(a) (4.0 points) max

Implement max, which takes a non-empty list of integers and returns the largest.

For example, (max '(1 4 3 5 2)) evaluates to 5.

The built-in length procedure returns the length of a list.

(define (max vals) (if (= (length vals) 1) _________
(a)

(_________ ((_________ _________))
(b) (c) (d)

(if (> (car vals) giant) (car vals) giant))))

i. (1.0 pt) What expression completes blank (a)?

(car vals)

ii. (1.0 pt) Which completes blank (b)?

define

 let

if

cond

begin

iii. (1.0 pt) What expression completes blank (c)?

giant

iv. (1.0 pt) What expression completes blank (d)?

(max (cdr vals))

Exam generated for <EMAILADDRESS> 21

(b) (6.0 points) partial

Implement partial, which takes a procedure action and a list args. It returns a procedure that takes one
argument final-arg and returns the result of calling action on the values in args as well as final-arg,
in that order.

For example ((partial - '(10 2)) 7) evaluates to 1, just like (- 10 2 7).

Assume that action can be called on k arguments, where k is one more than the length of args.

Hint: The built-in apply procedure takes two arguments: a procedure and a list of arguments. It returns
the result of calling the procedure on the arguments. For example, (apply - '(10 2 7)) evaluates to 1,
just like (- 10 2 7).

(define (partial action args)

(_________ _________ (apply action (_________ args _________))))
(a) (b) (c) (d)

i. (1.0 pt) What completes blank (a)?

lambda

ii. (1.0 pt) Which completes blank (b)?

final-arg

 (final-arg)

()

(args final-arg)

iii. (1.0 pt) Which symbol completes blank (c)?

Hint: All of these built-in procedures are demonstrated on top of Page 1 of the final study guide.

cons

list

 append

car

cdr

iv. (3.0 pt) What expression completes blank (d)?

(list final-arg)

https://cs61a.org/assets/pdfs/61a-final-study-guide.pdf

Exam generated for <EMAILADDRESS> 22

(c) (4.0 points) max again

Suppose there were a built-in maximum procedure that took one or more numbers as arguments and returned
the largest argument. For example, (maximum 1 4 3 5 2) would evaluate to 5.

Again, define max, which takes a list of numbers and returns its largest element. This time, you may use
only the symbols maximum, partial, apply, and list, along with parentheses, in your implementation.
You may not use any special forms (such as quotation, lambda, etc.).

Important: maximum takes multiple arguments that are numbers, while max takes a single argument that
is a list of numbers.

For example, (max '(1 4 3 5 2)) evaluates to 5, just like (maximum 1 4 3 5 2).

(define (max args) _________)
(a)

i. (4.0 pt) You may use only maximum, partial, apply, list, and parentheses.

What expression completes blank (a)?

(apply maximum args)

Exam generated for <EMAILADDRESS> 23

8. (13.0 points) Contact Tracing

Each row of the visits table describes a visit to some establishment by an individual.

• The who column indicates the individual’s name. Assume everyone has a unique name.

• The place column indicates which establishment they visited.

• The arrive column indicates the hour they arrived and the depart column indicates the hour they
departed. Assume all visits begin and end on the hour. All hours are from 1pm to 11pm. Assume depart
is greater than arrive.

CREATE TABLE visits AS
SELECT "Oski" AS who, "Bar" AS place, 4 AS arrive, 6 AS depart UNION
SELECT "Oski" , "Grocery" , 6 , 8 UNION
SELECT "Oski" , "Bar" , 8 , 11 UNION
SELECT "Jane" , "Grocery" , 5 , 7 UNION
SELECT "Jane" , "Restaurant" , 7 , 8 UNION
SELECT "Jane" , "Bar" , 8 , 10 UNION
SELECT "Jack" , "Restaurant" , 7 , 9 UNION
SELECT "Jack" , "Bar" , 9 , 10;

(a) (8.0 points) contacts

Create the contacts table. Each row describes a period of time in which another individual was in the
same establishment as Oski. If one individual departs just as another arrives, they do not make contact;
they must overlap in time to be included in the contacts table.

• The other column indicates the name of the individual (not Oski) who came in contact with Oski.

• The location column indicates the establishment in which they made contact.

• The start column indicates the hour that the contact period began.

• The stop column indicates the hour that the contact period ended.

The contents of contacts are below. Any row order is fine.

other | location | start | stop
======|==========|=======|======
Jane | Grocery | 6 | 7
Jane | Bar | 8 | 10
Jack | Bar | 9 | 10

Important: Your query should construct contacts correctly even if the rows of visits were different.

Hint: The MIN function computes the smaller of two values when called on two arguments. The MAX
function computes the larger. These are not aggregate functions when called on two arguments.

CREATE TABLE contacts AS

SELECT b.who AS other,
b.place AS location,
MAX(a.arrive, b.arrive) AS start,
MIN(a.depart, b.depart) AS stop

FROM visits AS a, visits AS b

WHERE a.who = _________ AND _________ AND _________ AND _________;
(a) (b) (c) (d)

Exam generated for <EMAILADDRESS> 24

i. (2.0 pt) What completes blank (a)?

“Oski”

ii. (2.0 pt) Which expression completes blank (b)?

a.who = b.who

 a.who != b.who

a.who < b.who

a.who > b.who

iii. (2.0 pt) Which expression completes blank (c)?

 stop > start

start > stop

stop >= start

start >= stop

start = stop

start != stop

iv. (2.0 pt) What expression completes blank (d)?

a.place = b.place

Exam generated for <EMAILADDRESS> 25

(b) (5.0 points) time

Select one row per individual other than Oski. Each row should contain two columns: the name of the
individual and the total time in hours that they spent in contact with Oski.

The result appears below. Any row order is fine.

name | time
=====|======
Jane | 3
Jack | 1

Important: Your query should construct this result correctly even if the rows of contacts were different.
Assume contacts is constructed correctly.

SELECT _________ AS name, _________ AS time FROM contacts _________;
(a) (b) (c)

i. (1.0 pt) What expression completes blank (a)?

who

name

 other

"who"

"name"

"other"

ii. (2.0 pt) What expression completes blank (b)?

SUM(stop - start)

iii. (2.0 pt) What clause completes blank (c)?

GROUP BY other

Exam generated for <EMAILADDRESS> 26

9. (7.0 points) Expression Tree

Definition: A tree expression for a Tree instance t is a string that starts with t and contains a Python
expression that evaluates to a node label within t by using branches and label attributes and item selection.

For example, if t = Tree(3, [Tree(4, [Tree(-1)]), Tree(-5)]), then there are 4 tree expressions for t:

• 't.label'
• 't.branches[0].label'
• 't.branches[1].label'
• 't.branches[0].branches[0].label'.

The Tree class is defined on the Midterm 2 Study Guide.

(a) (4.0 points) labels

Implement labels, which takes a Tree instance t and returns a list of all tree expressions for t in any
order.

def labels(t):
"""List all tree expressions for tree t.

>>> t = Tree(3, [Tree(4, [Tree(-1)]), Tree(-5)])
>>> for e in labels(t):
... print(e)
t.label
t.branches[0].label
t.branches[0].branches[0].label
t.branches[1].label
"""
def traverse(t, e):

result.append(_________)
(a)

for i in range(len(t.branches)):

traverse(t.branches[i], _________)
(b)

result = []
traverse(t, 't')
return result

i. (2.0 pt) What expression completes blank (a)?

e + ‘.label’

ii. (2.0 pt) What expression completes blank (b)?

e + ‘.branches[’ + str(i) + ’]’

http://cs61a.org/assets/pdfs/61a-mt2-study-guide.pdf

Exam generated for <EMAILADDRESS> 27

(b) (3.0 points) smallest

Complete the expression below that evaluates to the node label within t that is closest to zero (i.e., has the
smallest absolute value). For t = Tree(3, [Tree(4, [Tree(-1)]), Tree(-5)]), this would evaluate to
-1.

Assume labels is implemented correctly and the name t is bound to a Tree instance in the current
environment. The built-in eval function takes a string and returns the result of evaluating the expression
contained in the string in the current environment.

Important: Complete each blank with a single name.

_________([eval(_________) for e in labels(t)], key=_________)
(a) (b) (c)

i. (1.0 pt) What name completes blank (a)?

min

ii. (1.0 pt) What name completes blank (b)?

e

iii. (1.0 pt) What name completes blank (c)?

abs

Exam generated for <EMAILADDRESS> 28

No more questions.

