
Midterm Review

• logistics

• [ed link]

• content

• functions

• control (while, if)

• higher-order functions

• environment diagrams

• functional abstraction (lambda expressions)

• book: sections 1.1 - 1.6

• how to study

• read, watch, and code (by hand)

• review assignments

• be able to: write code, read code, execute code

https://edstem.org/us/courses/34756/discussion/2465121

Consider the following function and function call. What is the
output generated by python?

def mystery(a,b):
 return a + b

print(mystery("one plus two ","equals ") + str(mystery(1,2)))

Consider the following function and function call. What is the
output generated by python?

def mystery(a,b):
 return a + b

print(mystery("one plus two ","equals ") + str(mystery(1,2)))

one plus two equals 3

Consider the following function and function call. What is the
output generated by the last print statement?

x = 3
def test(x):
 x = x + 1
 return x  

test(1)
print(x)

Consider the following function and function call. What is the
output generated by the last print statement?

x = 3
def test(x):
 x = x + 1
 return x  

test(1)
print(x)
3

Consider the following function and function call. What is the
output generated by python?

def mystery(f,x,y):
 if x < y:
 return f(x)
 return f(y)

pow(mystery(abs,10,-3), 3)

Consider the following function and function call. What is the
output generated by python?

def mystery(f,x,y):
 if x < y:
 return f(x)
 return f(y)

pow(mystery(abs,10,-3), 3)
27

Consider the following function and function call. What is the
output generated by python?

i = 0
while i <= 4:
 if i % 2 == 0:
 j = 0
 while j < 2:
 print(i, j)
 j = j + 1
 i = i + 1

Consider the following function and function call. What is the
output generated by python?

i = 0
while i <= 4:
 if i % 2 == 0:
 j = 0
 while j < 2:
 print(i, j)
 j = j + 1
 i = i + 1

0 0
0 1

Consider the following function and function call. What is the
output generated by python?

i = 0
while i <= 4:
 if i % 2 == 0:
 j = 0
 while j < 2:
 print(i, j)
 j = j + 1
 i = i + 1

0 0
0 1
2 0
2 1

Consider the following function and function call. What is the
output generated by python?

i = 0
while i <= 4:
 if i % 2 == 0:
 j = 0
 while j < 2:
 print(i, j)
 j = j + 1
 i = i + 1

0 0
0 1
2 0
2 1
4 0
4 1

Write a Python function count_down that takes as input two integers
x and y and prints the values y, y-1, ..., x. For example calling
count_down(3,7) will yield the following output:
7
6
5
4
3
You can assume that x <= y.

Write a Python function count_down that takes as input two integers
x and y and prints the values y, y-1, ..., x. For example calling
count_down(3,7) will yield the following output:
7
6
5
4
3
You can assume that x <= y.

def count_down(x,y):
 i = y
 while i >= x:
 print(i)
 i = i - 1

A digit is a non-negative integer less than 10. Integers contain digits.
For example:

• the integer 21 contains the digits 1 and 2

• the integer 474 contains the digit 4 twice and the digit 7 once

• the integer 400 contains the digit 4 once and the digit 0 twice

• the integer -77 contains the digit 7 twice.

• the integer 0 is a 0-digit number that contains no digits.

Implement count, which takes a digit element and an integer as input
and returns the number of times the digit appears in the integer. You
may assume that digit > 0 and digit < 10.

You may call built-in functions that do not require import, such as min,
max, abs, and pow.

Warning: n % d and n // d may not behave as you expect for negative
n. You should not evaluate % or // for negative values of n.

def count(element, box):
 """Count how many times digit element appears in integer box
 >>> count(2, 222122)
 5
 >>> count(0, -2020)
 2
 >>> count(0, 0)
 0
 """
 box = _________
 (a)
 total = 0
 while box > 0:
 if _________:
 (b)
 total = _________
 (c)
 box = box // 10
 return total

def count(element, box):
 """Count how many times digit element appears in integer box
 >>> count(2, 222122)
 5
 >>> count(0, -2020)
 2
 >>> count(0, 0)
 0
 """
 box = _________
 (a)
 total = 0
 while box > 0:
 if box % 10 == element:
 total = _________
 (c)
 box = box // 10
 return total

def count(element, box):
 """Count how many times digit element appears in integer box
 >>> count(2, 222122)
 5
 >>> count(0, -2020)
 2
 >>> count(0, 0)
 0
 """
 box = _________
 (a)
 total = 0
 while box > 0:
 if box % 10 == element:
 total = total + 1
 box = box // 10
 return total

def count(element, box):
 """Count how many times digit element appears in integer box
 >>> count(2, 222122)
 5
 >>> count(0, -2020)
 2
 >>> count(0, 0)
 0
 """
 box = abs(box)
 total = 0
 while box > 0:
 if box % 10 == element:
 total = total + 1
 box = box // 10
 return total

Implement count_nine, which takes a digit and a non-negative
integer and returns the number of times the digit appears in the
integer and is not adjacent to a 9.

>>> count_nine(2, 222122)

5

>>> count_nine(1, 1911191)

1

>>> count_nine(9, 9)

1

>>> count_nine(9, 99)

0

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if _________ and not(nine or _________):
 (a) (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if box % 10 == element and not(nine or _________):
 (b)
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if box % 10 == element and not(nine or (box // 10) % 10 == 9):
 total = _________
 (c)
 nine = _________ == 9
 (d)
 box = box // 10
 return total

count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if box % 10 == element and not(nine or (box // 10) % 10 == 9):
 total = total + 1
 nine = _________ == 9
 (d)
 box = box // 10
 return total

count_nine(1, 1911191)

nine!9

1?

def count_nine(element, box):
 nine, total = False, 0
 while box > 0:
 if box % 10 == element and not(nine or (box // 10) % 10 == 9):
 total = total + 1
 nine = box % 10 == 9
 box = box // 10
 return total

Using a lambda expression, write a function mul_by_num that
takes one argument and returns a one argument function that
multiplies any value passed to it by the original number. The
function’s body must be only one line.

>>> f = mul_by_num(5)

>>> g = mul_by_num(2)

>>> f(3)

15

>>> g(-4)

-8

Using a lambda expression, write a function mul_by_num that
takes one argument and returns a one argument function that
multiplies any value passed to it by the original number. The
function’s body must be only one line.

>>> f = mul_by_num(5)

>>> g = mul_by_num(2)

>>> f(3)

15

>>> g(-4)

-8

def mul_by_num(num1):
 return lambda

Using a lambda expression, write a function mul_by_num that
takes one argument and returns a one argument function that
multiplies any value passed to it by the original number. The
function’s body must be only one line.

>>> f = mul_by_num(5)

>>> g = mul_by_num(2)

>>> f(3)

15

>>> g(-4)

-8

def mul_by_num(num1):
 return lambda num2: num1 * num2

Consider the following function and function call. What is the output
generated by python?

def mystery(y):
 x = 0
 while x < 5:
 f = lambda z: x + y + z
 x = x + 1
 return f

g = mystery(10)
print(g(20))

Consider the following function and function call. What is the output
generated by python?

def mystery(y):
 x = 0
 while x < 5:
 f = lambda z: x + y + z
 x = x + 1
 return f

g = mystery(10) # lambda z: 5 + 10 + z
print(g(20))

Consider the following function and function call. What is the output
generated by python?

def mystery(y):
 x = 0
 while x < 5:
 f = lambda z: x + y + z
 x = x + 1
 return f

g = mystery(10) # lambda z: 5 + 10 + z
print(g(20))
35

questions?

