Mutability

Announcements

Obijects

(Demo)

Objects

* Objects represent information
* They consist of data and behavior, bundled together to create abstractions
®* Objects can represent things, but also properties, interactions, & processes
* A type of object is called a class; classes are first-class values in Python
®* Object-oriented programming:

* A metaphor for organizing large programs

® Special syntax that can improve the composition of programs
e In Python, every value is an object

e A1l objects have attributes

* A lot of data manipulation happens through object methods

* Functions do one thing; objects do many related things

Example: Strings

(Demo)

Representing Strings: the ASCII Standard

P P PP OO O OC
P PO O RFrRPr PO O
PR O FrRPr O FrPrR o Fr o

3 bits

NGO OLATWINFRO

8 rows:

American Standard Code for Information Interchange

"Bell" a "Line feed" n
[(\a) SCII Code Chart (\n)
0 1 2 3 4 5 7 8 9 A B C D E F
NUL | SOH |STX |ETX [EOT |ENQ |ACKTBEL| BS | HT | LF'| vT [FF | ¢CR | SO | SI
DLE | DC1 | DC2 | DC3 | DC4 |NAK | SYN [ETB|CAN | EM |SUB|ESC| FS | GS | RS | US

! " # |1 %$| % | & ' () * + ’ - /
0 1 2 3 4 5 6 7 8 9 - H < = > ?
@ A B C D E F G H I J K L M N 0
P Q R S T U vV W X Y Z [\ 1 A -
~la|lb|c|d|e|f|9|h|i]|Jj|k]|]l]|m]n]|o
o] q r s t u v | w | x y z { | } ~ |DEL
16 columns: 4 bits
* Layout was chosen to support sorting by character code
®* Rows indexed 2-5 are a useful 6-bit (64 element) subset

* Control characters were designed for transmission

(Demo)

Representing Strings: the Unicode Standard

® 137,994 characters in Unicode 12.1
® 150 scripts (organized)

* Enumeration of character properties,
such as case

® Supports bidirectional display order

* A canonical name for every character

LATIN CAPITAL LETTER A
DIE FACE-6

EIGHTH NOTE

8074 8075 8076

AR | B

8174 8175 8176

8274 8275 8276

| 22 | A

8374 8375 8376

(Demo)

Mutation Operations

Some Objects Can Change

[Demo]

First example in the course of an object changing state

The same object can change in value throughout the course of computation

jessica L;\\‘ '
same_person | — (/& &

T Unicode
character
name

All names that refer to the same object are affected by a mutation

Only objects of mutable types can change: lists & dictionaries

{Demo}

Mutation Can Happen Within a Function Call

A function can change the value of any object in its scope

>>> four = [1, 2, 3, 4] def mystery(s): or def mystery(s):
>>> len(four) s.pop() s[2:] = []
4 s.pop()

>>> mystery(four)
>>> len(four)

2

>>> four = [1, 2, 3, 4] def another_mystery():
>>> len(four) four.pop()

4 four.pop()

>>> another_mystery() # No arguments!
>>> len(four)

pythontutor.com/composingprograms.html#code=def%s20mystery%285s%29%3A%0A%20%20%20%205s . pop%28%29%0A%20%20%20%20S . pOp%28%29%0A%0AToUr%s20%3D%20 [1,%202,%203,%204]%0Amystery%28fours29&mode=display&origin=composingprograms.js&cumulative=true&py=3&rawInputLstISON=[]&curInstr=0

Tuples

(Demo)

Tuples are Immutable Sequences

Immutable values are protected from mutation

>>> turtle = (1, 2, 3) >>> turtle = [1, 2, 3]

>>> o0oze() >>> o0o0ze()

>>> turtle >>> turtle

(1, 2, 3) ['Anything could be inside!']

The value of an expression can change because of changes in names or objects

>>> X = 2 >>> x = [1, 2]
S>> X + X === X + X
. 4 . . [1, 2, 1, 2]
Name change: oes x = 3 Object mutation: ~>> x.append(3)
>>> X + X === X + X
6 [1, 2, 3, 1, 2, 3]

An immutable sequence may still change if it contains a mutable value as an element

>>> s = ([1, 21, 3) >>> s = ([1, 2], 3)
>>> s[0] = 4 >>> s[0][0] = 4
ERROR >>> g

([4, 21, 3)

Mutation

Sameness and Change

As long as we never modify objects, a compound object is just the totality of its pieces
A rational number is just its numerator and denominator

This view is no longer valid in the presence of change

A compound data object has an "identity" in addition to the pieces of which it is composed
A list is still "the same" list even if we change its contents

- Conversely, we could have two lists that happen to have the same contents, but are different

>>> g = [10] >>> a = [10]

>>> b = a >>> b = [10]

>>> g == >>> g ==

True True

>>> a.append(20) >>> b.append(20)
>>> g >>> g

[10, 20] [10]

>>> b >>> b

[10, 20] [10, 20]

>>> a == >>> g ==

True False

|dentity Operators

Identity
<exp0> is <expl>

evaluates to True if both <exp®@> and <expl> evaluate to the same object

Equality
<exp0> == <expl>

evaluates to True if both <exp@> and <expl> evaluate to equal values

Identical objects are always equal values

(Demo)

Mutable Default Arguments are Dangerous

A default argument value is part of a function value, not generated by a call

>>> def f(s=[]): Global frame /f—-?func f(s) [parent=Global]
e s.append(3) f -
IS
e return len(s) o 11 |2
= s . — 3 3 3
oo () fl: f [parent=Global]
1 S |
>>> () Return
2 value | Each time the function
>>> f() is called, s is bound
3 f2: f [parent=Global] to the same value!
S L
Return 2
value |

f3: f [parent=Global]
S L

Return 3
value »

pythontutor.com/composingprograms.html#code=def%20%285%3D []%29%3A%0A%20%20%20%20s . appendss283%29%0A%20%20%20%20 returns201en%s285%29%0A%20%20%20%20%0A F%28%29%0A F%28%29%0A F%28%29&mode=d isp lay&origin=composingprogranms. js&cumulative=t rue&py=3&rawInputLstISON=[]&curInstr=

Mutable Functions

A Function with Behavior That Varies Over Time

Let's model a bank account that has a balance of $100

-
Return value:
remaining balance
N
(.
Different
return value!
N

-
I

In a (mutable) 1list

referenced in the parent

>>> withdraw = make withdraw 1ist(100)

frame of the function

>>> withdraw(25)

~
Argument:
s amount to withdraw

J

N
<i$econd withdrawal of

>>> withdraw(25)

50 the same amount

>>> withdraw(60)
"Insufficient funds'

stored?

>>> withdraw(15)
35

Where's this balance}

Mutable Values & Persistent Local State

Global frame func make_withdraw_list(balance) [parent=Global]

make_withdraw_list |« e ‘

i t :
withdraw \ . i1 It changes the contents
\ of the b list

fl: make_withdraw_list [parent=Global] ‘\\\ """""""
""BéEHEE 100 func withdraw(amount) [parent=fl]
: . .
Wlthd.raw doesn’t EWIthdrawi def make_withdraw_list(balance):
vzeiizsi;gghznyapzﬂi : b * f Name bound b = [balance]
parent . & T S . def withdraw(amount):
Return outside of _
value withdraw def NS AmOHDE = DS 4
— _) return 'Insufficient funds'
e ————b[0] = b[0] - amount
f2: withdraw [parent=f1] El?ment return b[0]
assignment return withdraw
amount 25 changes a list
nglil:g 75 - “Withdraw = make_withdraw_list(160)

L withdraw(25)

