
Generators Announcements

Generators

Generators and Generator Functions

A generator function is a function that yields values instead of returning them

A normal function returns once; a generator function can yield multiple times

A generator is an iterator created automatically by calling a generator function

When a generator function is called, it returns a generator that iterates over its yields

4

(Demo)

>>> def plus_minus(x):
... yield x
... yield -x

>>> t = plus_minus(3)
>>> next(t)
3
>>> next(t)
-3
>>> t
<generator object plus_minus ...>

Generators & Iterators

Generator Functions can Yield from Iterables

A yield from statement yields all values from an iterator or iterable (Python 3.3)

6

def a_then_b(a, b):
 yield from a
 yield from b

def a_then_b(a, b):
 for x in a:
 yield x
 for x in b:
 yield x

def countdown(k):
 if k > 0:
 yield k
 yield from countdown(k-1)

>>> list(a_then_b([3, 4], [5, 6]))
[3, 4, 5, 6]

>>> list(countdown(5))
[5, 4, 3, 2, 1]

(Demo)

Example: Partitions

Yielding Partitions

A partition of a positive integer n, using parts up to size m, is a way in which n can be
expressed as the sum of positive integer parts up to m in increasing order.

8

partitions(6, 4)

3 + 3 = 6

1 + 1 + 2 + 2 = 6

2 + 4 = 6

1 + 1 + 4 = 6

1 + 2 + 3 = 6
1 + 1 + 1 + 3 = 6
2 + 2 + 2 = 6

1 + 1 + 1 + 1 + 2 = 6
1 + 1 + 1 + 1 + 1 + 1 = 6

def count_partitions(n, m):
 if n == 0:
 return 1
 elif n < 0:
 return 0
 elif m == 0:
 return 0
 else:
 with_m = count_partitions(n-m, m)
 without_m = count_partitions(n, m-1)
 return with_m + without_m

(Demo)

