

Binary Numbers

0110 (base 2)

0x23 + 1x22 + 1x21 + 0x20

0x8 + 1x4 + 1x2 + 0x1

6 (base 10)

Binary Numbers

2-bit binary number

00 0
01 1
10 2
11 3

2120

max value = 22 -1

Binary Numbers

3-bit binary number

000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7 max value = 23 -1

Boolean Logic (variables)

1 = True

0 = False

a and b

Boolean Logic (truth tables)

a b a and b

1 1 1

1 0 0

0 1 0

0 0 0

a or b

Boolean Logic (truth tables)

a b a or b

1 1 1

1 0 1

0 1 1

0 0 0

not a

Boolean Logic (truth tables)

a not a

1 0

0 1

a and b⋅a
b a or b

a
b + not a a

a b a and b

1 1 1

1 0 0

0 1 0

0 0 0

a b a or b

1 1 1

1 0 1

0 1 1

0 0 0

a not a

1 0

0 1

Building Gates (transistors)

input

power

input

power

0 1

0

0

power

0

0

1

power

0

1

0

power

0

1

1

power

1

AND gate

Building Gates (transistors)

OR gate

0 1

power

1

Building Gates (transistors)

OR gate

1 1

power

1

Building Gates (transistors)

OR gate

power

0

0 0

Building Gates (transistors)

NOT gate

0

power

1

junk

resistor

Building Gates (transistors)

NOT gate

1

power

0

junk

resistor

Building Gates (transistors)

Circuits

A circuit is a collection of logical gates that
transforms a set of binary inputs into a set
of binary outputs.

1-Bit Compare for Equality (CE)

If two bits a, b are equal then
 return 1
else
 return 0

1-Bit Compare for Equality (CE)

a b c

0 0

0 1

1 0

1 1

input output

1-Bit Compare for Equality (CE)

a b c

0 0 1

0 1 0

1 0 0

1 1 1

input output

1-Bit Compare for Equality (CE)

a b c sub-
expression

0 0 1

0 1 0

1 0 0

1 1 1

input output

1-Bit Compare for Equality (CE)

a b c sub-
expression

0 0 1 a’ ⋅ b’

0 1 0

1 0 0

1 1 1 a ⋅ b

input output

1-Bit Compare for Equality (CE)

a b c sub-
expression

0 0 1 a’ ⋅ b’

0 1 0

1 0 0

1 1 1 a ⋅ b

input output

c = (a’ ⋅ b’) + (a ⋅ b)

1-Bit Compare for Equality (CE)

a
b

c

c = (a’ ⋅ b’) + (a ⋅ b)

input output

1-Bit Compare for Equality (CE)

a
b

c

⋅
(a ⋅ b)

c = (a’ ⋅ b’) + (a ⋅ b)

input output

1-Bit Compare for Equality (CE)

a
b

c

⋅
(a ⋅ b)

⋅ (a’ ⋅ b’)

c = (a’ ⋅ b’) + (a ⋅ b)

input output

1-Bit Compare for Equality (CE)

a
b

c

⋅
(a ⋅ b)

⋅ (a’ ⋅ b’)

c = (a’ ⋅ b’) + (a ⋅ b)

input output

+

(a’⋅b’)+(a⋅b)

Designing Circuits

step 1. build truth-table for all possible input/output values

step 2. build sub-expressions with and/not for each output column

step 3. combine, two at a time, sub-expressions with an or

step 4. draw circuit diagram

1-Bit Adder

build a circuit that adds two 1-bit numbers

1-Bit Adder

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = ?

1-Bit Adder

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10 need to carry

1-Bit Adder

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

input: two digits a, b and a carry c

1-Bit Adder

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 10

output: sum d and carry e

1-Bit Adder

101
001

 5
 1

 6

22+20
20

1-Bit Adder

 1
101
001

 0

 5
 1

 6

1-Bit Adder

 1
101
001

 10

 5
 1

 6

1-Bit Adder

 1
101
001

110

 5
 1

 6 22+21

1-Bit Adder

input: digits a, b and carry c
output: sum d and carry e

a b c d e

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

1-Bit Adder

a b c d e sub-expressions
(d)

sub-expressions
(e)

0 0 0 0 0

0 0 1 1 0 a’⋅b’⋅c

0 1 0 1 0 a’⋅b⋅c’

0 1 1 0 1 a’⋅b⋅c

1 0 0 1 0 a⋅b’⋅c’

1 0 1 0 1 a⋅b’⋅c

1 1 0 0 1 a⋅b⋅c’

1 1 1 1 1 a⋅b⋅c a⋅b⋅c

e = (a’⋅b⋅c) + (a⋅b’⋅c) + (a⋅b⋅c’) + (a⋅b⋅c)

1-Bit Adder

a’⋅b’⋅c

a b c

d

e

4-Bit Adder

build a circuit that adds two 4-bit numbers

4-Bit Adder

1-ADD
a
b d

c

e

carry-in

carry-out

sumdigits

4-Bit Adder

a0

a1

a2

a3

b0

b1

b2

b3

1-ADD d0

c0

4-Bit Adder

a0

a1

a2

a3

b0

b1

b2

b3

1-ADD d0

c0

0

4-Bit Adder

a0

a1

a2

a3

b0

b1

b2

b3

1-ADD

1-ADD

d0

c0

0

d1

c1

4-Bit Adder

a0

a1

a2

a3

b0

b1

b2

b3

1-ADD

1-ADD

1-ADD

d0

c0

0

d1

c1

d2

c2

4-Bit Adder

a0

a1

a2

a3

b0

b1

b2

b3

1-ADD

1-ADD

1-ADD

1-ADD

d0

c0

0

d1

c1

d2

c2

d3

