
CS ��A A�S Section ����
�

Object�Oriented Programming � Below the line view

This document documents the Object Oriented Programming system for CS ��A in terms of its

implementation in Scheme� It assumes that you already know what the system does� i�e� that you�ve

read �Object	Oriented Programming 
 Above the line view�� Also� this handout will assume a

knowledge of how to implement message passing and local state variables in Scheme� from chapters

��� and ��� of A�S� �Chapter ��� from A�S will also be helpful�


Almost all of the work of the object system is handled by the special form define�class� When

you type a list that begins with the symbol define�class� Scheme translates your class de�nition

into Scheme code to implement that class� This translated version of your class de�nition is written

entirely in terms of define� let� lambda� set�� and other Scheme functions that you already know

about�

We will focus on the implementation of the three main technical ideas in OOP� message passing�

local state� and inheritance�

Message Passing

The text introduces message	passing with this example from Section ����� �page ���
�

�define �make�rectangular x y�

�define �dispatch m�

�cond ��eq� m �real�part� x�

��eq� m �imag�part� y�

��eq� m �magnitude�

�sqrt �� �square x� �square y����

��eq� m �angle� �atan y x��

�else

�error �Unknown op �� MAKE�RECTANGULAR� m����

dispatch�

In this example� a complex number object is represented by a dispatch procedure� The procedure

takes a message as its argument� and returns a number as its result� Later� in Section ����� �page

���
� the text uses a re�nement of this representation in which the dispatch procedure returns a

procedure instead of a number� The reason they make this change is to allow for extra arguments

to what we are calling the method that responds to a message� The user says

��acc �withdraw� �		�

Evaluating this expression requires a two	step process� First� the dispatch procedure �named acc
 is

invoked with the message withdraw as its argument� The dispatch procedure returns the withdraw

method procedure� and that second procedure is invoked with �		 as its argument to do the actual

work� All of an object�s activity comes from invoking its method procedures� the only job of the

object itself is to return the right procedure when it gets sent a message�

Any OOP system that uses the message	passing model must have some below	the	line mechanism

for associating methods with messages� In Scheme� with its �rst	class procedures� it is very natural

��



to use a dispatch procedure as the association mechanism� In some other language the object might

instead be represented as an array of message	method pairs�

If we are treating objects as an abstract data type� programs that use objects shouldn�t have to

know that we happen to be representing objects as procedures� The two	step notation for invoking

a method violates this abstraction barrier� To �x this we invent the ask procedure�

�define �ask object message 
 args�

�let ��method �object message��� � Step �� invoke dispatch procedure

�if �method� method�

�apply method args� � Step 
� invoke the method

�error �No method� message �cadr method�����

Ask carries out essentially the same steps as the explicit notation used in the text� First it invokes

the dispatch procedure �that is� the object itself
 with the message as its argument� This should

return a method �another procedure
� The second step is to invoke that method procedure with

whatever extra arguments have been provided to ask�

The body of ask looks more complicated than the earlier version� but most of that has to do with

error	checking� What if the object doesn�t recognize the message we send it� These details aren�t

very important� Ask does use two features of Scheme that we haven�t discussed before�

The dot notation used in the formal parameter list of ask means that it accepts any number of

arguments� The �rst two are associated with the formal parameters object and message� all

the remaining arguments �zero or more of them
 are put in a list and associated with the formal

parameter args�

The procedure apply takes a procedure and a list of arguments and applies the procedure to the

arguments� The reason we need it here is that we don�t know in advance how many arguments the

method will be given� if we said �method args� we would be giving the method one argument�

namely� a list�

In our OOP system� you generally send messages to instances� but you can also send some messages

to classes� namely the ones to examine class variables� When you send a message to a class� just as

when you send one to an instance� you get back a method� That�s why we can use ask with both

instances and classes� �The OOP system itself also sends the class an instantiate message when

you ask it to create a new instance�
 Therefore� both the class and each instance is represented by

a dispatch procedure� The overall structure of a class de�nition looks something like this�

�define �class�dispatch�procedure class�message�

�cond ��eq� class�message �some�var�name� �lambda �� �get�the�value���

�


�

��eq� class�message �instantiate�

�lambda �instantiation�var 


�

�define �instance�dispatch�procedure instance�message�

�cond ��eq� instance�message �foo� �lambda 


��

�


�

�else �error �No method in instance��� ��

instance�dispatch�procedure��

�else �error �No method in class��� ��

��



�Please note that this is not exactly what a class really looks like� In this simpli�ed version we

have left out many details� The only crucial point here is that there are two dispatch procedures�

one inside the other�
 In each dispatch procedure� there is a cond with a clause for each allow	

able message� The consequent expression of each clause is a lambda expression that de�nes the

corresponding method� �In the text� the examples often use named method procedures� and the

consequent expressions are names rather than lambdas� We found it more convenient this way� but

it doesn�t really matter�


Local State

You learned in section ��� that the way to give a procedure a local state variable is to de�ne that

procedure inside another procedure that establishes the variable� That outer procedure might be

the implicit procedure in the let special form� as in this example from page ����

�define new�withdraw

�let ��balance �		��

�lambda �amount�

�if ��� balance amount�

�begin �set� balance �� balance amount��

balance�

�Insufficient funds�����

In the OOP system� there are three kinds of local state variables� class variables� instance variables�

and instantiation variables� Although instantiation variables are just a special kind of instance

variable above the line� they are implemented di�erently� Here is another simpli�ed view of a class

de�nition� this time leaving out all the message passing stu� and focusing on the variables�

�define class�dispatch�procedure

�LET ��CLASS�VAR� VAL��

�CLASS�VAR
 VAL
� 


�

�lambda �class�message�

�cond ��eq� class�message �class�var�� �lambda �� class�var���






��eq� class�message �instantiate�

�lambda �INSTANTIATION�VARIABLE� 


�

�LET ��INSTANCE�VAR� VAL��

�INSTANCE�VAR
 VAL
� 


�

�define �instance�dispatch�procedure instance�message�




�

instance�dispatch�procedure�������

The scope of a class variable includes the class dispatch procedure� the instance dispatch procedure�

and all of the methods within those� The scope of an instance variable does not include the class

dispatch procedure in its methods� Each invocation of the class instantiate method gives rise to

a new set of instance variables� just as each new bank account in the book has its own local state

variables�

��



Why are class variables and instance variables implemented using let� but not instantiation vari	

ables� The reason is that class and instance variables are given their �initial
 values by the class

de�nition itself� That�s what let does� It establishes the connection between a name and a value�

Instantiation variables� however� don�t get values until each particular instance of the class is cre	

ated� so we implement these variables as the formal parameters of a lambda that will be invoked

to create an instance�

Inheritance and Delegation

Inheritance is the mechanism through which objects of a child class can use methods from a parent

class� Ideally� all such methods would just be part of the repertoire of the child class� the parent�s

procedure de�nitions would be �copied into� the Scheme implementation of the child class�

The actual implementation in our OOP system� although it has the same purpose� uses a somewhat

di�erent technique called delegation� Each object�s dispatch procedure contains entries only for the

methods of its own class� not its parent classes� But each object has� in an instance variable� an

object of its parent class� To make it easier to talk about all these objects and classes� let�s take

an example that we looked at before�

�define�class �checking�account init�balance�

�parent �account init�balance��

�method �write�check amount�

�ask self �withdraw �� amount 	
�	�� ��

Let�s create an instance of that class�

�define Gerry�account �instantiate checking�account 
				��

Then the object named Gerry�account will have an instance variable named my�account whose

value is an instance of the account class� �The variables my�whatever are created automatically

by define�class�


What good is this parent instance� If the dispatch procedure for Gerry�account doesn�t recognize

some message� then it reaches the else clause of the cond� In an object without a parent� that

clause will generate an error message� But if the object does have a parent� the else clause passes

the message on to the parent�s dispatch procedure�

�define �make�checking�account�instance init�balance�

�LET ��MY�ACCOUNT �INSTANTIATE ACCOUNT INIT�BALANCE���

�lambda �message�

�cond ��eq� message �write�check� �lambda �amount� 


��

��eq� message �init�balance� �lambda �� init�balance��

�ELSE �MY�ACCOUNT MESSAGE�� ����

�Naturally� this is a vastly simpli�ed picture� We�ve left out the class dispatch procedure� among

other details� There isn�t really a procedure named make�checking�account�instance in the

implementation� this procedure is really the instantiate method for the class� as we explained

earlier�


��



When we send Gerry�account a write�check message� it�s handled in the straightforward way

we�ve been talking about before this section� But when we send Gerry�account a depositmessage�

we reach the else clause of the cond and the message is delegated to the parent account object�

That object �that is� its dispatch procedure
 returns a method� and Gerry�account returns the

method too�

The crucial thing to understand is why the else clause does not say

�else �ask my�parent message��

The Gerry�account dispatch procedure takes a message as its argument� and returns a method as

its result� Ask� you�ll recall� carries out a two	step process in which it �rst gets the method and then

invokes that method� Within the dispatch procedure we only want to get the method� not invoke

it� �Somewhere there is an invocation of ask waiting for Gerry�account�s dispatch procedure to

return a method� which ask will then invoke�


There is one drawback to the delegation technique� As we mentioned in the above	the	line handout�

when we ask Gerry�account to deposit some money� the deposit method only has access to the

local state variables of the account class� not those of the checking�account class� Similarly� the

write�check method doesn�t have access to the account local state variables like balance� You

can see why this limitation occurs� Each method is a procedure de�ned within the scope of one or

the other class procedure� and Scheme�s lexical scoping rules restrict each method to the variables

whose scope contains it� The technical distinction between inheritance and delegation is that an

inheritance	based OOP system does not have this restriction�

We can get around the limitation by using messages that ask the other class �the child asks the

parent� or vice versa
 to return �or modify
 one of its variables� The �ask self �withdraw 


�

in the write�check method is an example�

Bells and Whistles

The simpli�ed Scheme implementation shown above hides several complications in the actual OOP

system� What we have explained so far is really the most important part of the implementation�

and you shouldn�t let the details that follow confuse you about the core ideas� We�re giving pretty

brief explanations of these things� leaving out the gory details�

One complication is multiple inheritance� Instead of delegating an unknown message to just one

parent� we have to try more than one� The real else clauses invoke a procedure called get�method

that accepts any number of objects �i�e�� dispatch procedures
 as arguments� in addition to the

message� Get�method tries to �nd a method in each object in turn� only if all of the parents fail to

provide a method does it give an error message� �There will be a my�whatever variable for each of

the parent classes�


Another complication that a�ects the else clause is the possible use of a default�method in the

class de�nition� If this optional feature is used� the body of the default�method clause becomes

part of the object�s else clause�

When an instance is created� the instantiate procedure sends it an initialize message� Every

dispatch procedure automatically has a corresponding method� If the initialize clause is used

��



in define�class� then the method includes that code� But even if there is no initialize clause�

the OOP system has some initialization tasks of its own to perform�

In particular� the initialization must provide a value for the self variable� Every initialize

method takes the desired value for self as an argument� If there are no parents or children

involved� self is just another name for the object�s own dispatch procedure� But if an instance is

the my�whatever of some child instance� then self should mean that child� The solution is that

the child�s initialize method invokes the parent�s initializemethod with the child�s own self

as the argument� �Where does the child get its self argument� It is provided by the instantiate

procedure�


Finally� usual involves some complications� Each object has a send�usual�to�parent method

that essentially duplicates the job of the ask procedure� except that it only looks for methods in

the parents� as the else clause does� Invoking usual causes this method to be invoked�

A useful feature

To aid in your understanding of the below	the	line functioning of this system� we have provided a

way to look at the translated Scheme code directly� i�e�� to look at the below	the	line version of a

class de�nition� To look at the de�nition of the class foo� for example� you type

�show�class �foo�

If you do this� you will see the complete translation of a define�class� including all the details

we�ve been glossing over� But you should now understand the central issues well enough to be able

to make sense of it�

We end this document with one huge example showing every feature of the object system� Here

are the above	the	line class de�nitions�

�define�class �person� �method �smell�flowers� �Mmm���

�define�class �fruit�lover fruit� �method �favorite�food� fruit��

�define�class �banana�holder name�

�class�vars �list�of�banana�holders �����

�instance�vars �bananas 	��

�method �get�more�bananas amount�

�set� bananas �� bananas amount���

�default�method �sorry�

�parent �person� �fruit�lover �banana��

�initialize

�set� list�of�banana�holders �cons self list�of�banana�holders��� �

On the next page we show the translation of the banana�holder class de�nition into ordinary

Scheme� Of course this is hideously long� since we have arti�cially de�ned the class to use every

possible feature at once� The translations aren�t meant to be read by people� ordinarily� The

comments in the translated version were added just for this handout� you won�t see comments if

you use show�class yourself�

��



�define banana�holder

�let ��list�of�banana�holders ����� �� class vars set up
�lambda �class�message� �� class dispatch proc
�cond
��eq� class�message �list�of�banana�holders�
�lambda �� list�of�banana�holders��

��eq� class�message �instantiate�
�lambda �name� �� Instantiation vars
�let ��self ���� �� Instance vars

�my�person �instantiate�parent person��
�my�fruit�lover �instantiate�parent fruit�lover �banana��
�bananas 	��

�define �dispatch message� �� Object dispatch proc
�cond
��eq� message �initialize� �� Initialize method�
�lambda �value�for�self� �� set up self variable

�set� self value�for�self�

�ask my�person �initialize self�
�ask my�fruit�lover �initialize self�
�set� list�of�banana�holders �� user�s init code

�cons self list�of�banana�holders����
��eq� message �send�usual�to�parent� �� How USUAL works
�lambda �message 
 args�

�let ��method �get�method
�banana�holder
message
my�person
my�fruit�lover���

�if �method� method�
�apply method args�
�error �No USUAL method� message �banana�holder�����

��eq� message �name� �lambda �� name��
��eq� message �bananas� �lambda �� bananas��
��eq� message �list�of�banana�holders�

�lambda �� list�of�banana�holders��
��eq� message �get�more�bananas�
�lambda �amount� �set� bananas �� bananas amount����
�else �� Else clause�
�let ��method �get�method

�banana�holder
message
my�person
my�fruit�lover���

�if �method� method� �� Try delegating



method

�lambda args �sorry������ �� default�method

dispatch��� �� Class� instantiate
�� proc returns object

�else �error �Bad message to class� class�message������

��


