November 12, 2005

3. (let ((x (list 1 2 3 4)))
(set-car! (cddr x) x)

x)

4. (let ((x (list 1 2 3)))
(set-car! x (cdr x))
(set-cdr! (car x) 5)
x)

5. (let ((x (list 1 2 3)))
(set-car! x (list ’a ’b ’c))
(set-car! (cdar x) ’d)
x)



November 12, 2005

Environment Diagram

1. Question 6 of Final, Fall 1997

(define (kons a b)
(lambda (m)
(if (eq? m ’kar) a b)))
(define p (kons (koms 1 2) 3))

2. Question 9 of Final, Fall 1998

(define x 3)
(define y 4)
(define foo
((lambda (x) (lambda (y) (+ x y)))

(+ x y)))
(foo 10)



November 12, 2005 6

List Mutations

1. Question 2 of MT3, Fall 1994
Write make-alist!, a procedure that takes as its argument a list of alternating keys and values, like this:
(color orange zip 94720 name wakko)
and changes it, by mutation, into an association list, like this:
((color . orange) (zip . 94720) (name . wakko))

You may assume that the argument list has an even number of elements. The result of your procedure requires
exactly as many pairs as the argument, so you will work by rearranging the pairs in the argument itself. Do
not allocate any new pairs in your solution!

2. Question 2 of MT3, Spring 1996

Write 1ist-rotate! which takes two arguments, a nonnegative integer n and a list seq. It returns a mutated
version of the argument list, in which the first n elements are moved to the end of the list, like this:

> (list-rotate! 3 (list ’a ’b ’c ’d ’e ’f ’g))
(defgaboc)

You may assume that 0 < n < (length seq) without error checking.

Note: Do not allocate any new pairs in your solution. Rearrange the existing pairs.



November 12, 2005 9

Vector

1. You’ve seen vectors. You've seen tables. We want to implement tables with vectors. To make things easier, we're

going to assume that there are two vector tables that manage keys and values. Assume that the corresponding
key/value pair has the same index.

Write vector-lookup for vector-tables. It acts just like lookup in tables. It takes a key and returns the
corresponding value if the key is in the table and #f otherwise.

2. Write vector-reverse! that does the obvious thing. Do not create new vectors!

Hint: You might want to write a helper called vector-swap! that takes in a vector and two indices and swap
the elements at those indices.



November 12, 2005 10

Concurrency

1. What are the possible values of x after the following is executed:

(define x 10)
(parallel-execute (lambda() (set! x (+ 5 x)) (set! x (*x x 3)))
(lambda () (if (> x 16)
(set! x 100)
(set! x (- x 20)))))

2. Question 13 of Final, Spring 2003

Given the following definitions:

(define s (make-serializer))
(define t (make-serializer))
(define x 10)

(define (f) (set! x (+ x 3)))
(define (g) (set! x (x x 2)))

Can the following expressions produce an incorrect result, a deadlock, or neither? (By ”incorrect result” we
mean a result that is not consistent with some sequential ordering of the processes.)

(a) (parallel-execute (s £) (t g))

(b) (parallel-execute (s f) (s g))

(c) (parallel-execute (s (t £)) (t g))

(d) (parallel-execute (s (t f)) (s g))

(e) (parallel-execute (s (t £)) (t (s g)))





