
PROJECT 4: BIOINFORMATICS 26
GEORGE WANG

gswang.cs61a@gmail.com
Department of Electrical Engineering and Computer Sciences

University of California, Berkeley

August 5, 2010

Note: The data files linked below are not yet ready, but should be shortly. This document should be enough
to give you a strong head start.

1 Background

First off, why is there all the buzz about DNA? Why do we care about DNA? In short, DNA is a coding
scheme, a language, that describes your physical biological body. DNA goes through a process called tran-
scription which converts it to mRNA. This mRNA is further transformed into proteins through translation.
Proteins form the major building blocks of who you are from a biological point of view. Note that this is a
dramatically understated version of what DNA influences. Studies have correlated DNA sequences with
everything from intelligence to ability to play sports.

This project explores two powerful examples of bioinformatics: genome sequencing and phylogenetic tree
construction. In a real way, these techniques would not be possible on the scale they are used without the
aid of computers.

2 Reassembly

2.1 Background

The Human Genome Project had a fundamental roadblock in its way. The chain termination technique
used to sequence a section of DNA is not good enough to sequence an exceptionally long section of DNA.
Specifically, it is unable to sequence a sequence of base pairs longer than about 1,000 base pairs. Thus, in
order to do this, a method known as SHOTGUN SEQUENCING is used. Biologically, this means they use
something called a restriction enzyme to ’cut up’ a long DNA strand into small pieces. Once done, you are
left with many pieces of DNA that have overlaps, and this is where the computational component kicks in
to reassemble these into our original DNA.

1



2.2 Our Abstraction and Algorithm

We will abstract out the chemistry and treat DNA as just a word, in the same vein of the words and sentences
you are accustomed to. For example, we start with a string like: ’maryhadalittlelamb’. From there, we cut
it up into ’mary’, ’ryhada’, ’littlela’, ’adalittle’, ’lelamb’. Our job is to reassemble them.

We apply an algorithm called a ’greedy algorithm’. In other words, we do the best thing that we can see
immediately, and we do that, and we’ll repeatedly do that. Your job is to code this algorithm. Your input
will be a list of words, some of which overlap. You will write a function that combines the two words
with the most overlap. In the example above, ’littlela’ and ’adalittle’ overlap by 6 characters, and these
two would be combined into a single word: ’adalittlela’. You repeatedly do this process until you are left
with a single word. You may need helper procedures to calculate the overlap between any two words, then
repeatedly run this helper function. You may also wish to test this on smaller input before running it on a
large segment of code.

We’ve provided an input file called cutSequence.scm. This will define a list named ’snippets’, which
contains snippets of DNA. You should run your code on snippets.

2.3 Problem Analysis

We’ve changed this problem from a problem about recombining DNA to a problem known as the SHORT-
EST COMMON SUPERSTRING. The problem asks us, given a set of strings (words), what is the shortest
superstring (word) that contains each of the words in the set?

There’s always two things we must be concerned with whenever we develop a computational model for
anything. The first thing is whether our abstracted problem closely resembles the original. Fortunately, by
and large, the shortest common superstring of all the segments is equivalent to the original sequence for
DNA. However, this isn’t always true, and this is something we must keep in mind.

Secondly, is whether our algorithm correctly solves our abstract problem. Although our Greedy Algorithm
solves the problem in the sense that it always produces a Superstring, the superstring isn’t necessarily the
shortest. Thus, it has some chance of returning a ’wrong’ answer. We are going to assume that so long as
the amount of overlaps is ’large’, so then our solutions will be okay.

Moral of the story: our problem formulation isn’t perfect and neither is our solution, but they’re good
enough to get the work done.

3 Phylogenetic Tree Construction

Once you have the full genome of an organism, you begin to embark on the second phase of the project.
Your job here is to be able to construct a phylogenetic tree. To do so, there are two major sections. First, we
must create a way to find a way to measure how far apart evolutionarily two organisms are. Once we know
that, we’ll use a method called UPGMA to compute a phylogenetic tree. Since this is a project designed
to simulate the experience of a researcher doing bioinformatics, the two algorithms used in this section
will not be explicitly discussed below. It is your responsibility to utilize the considerable resources at your
disposal to learn them on your own.

3.1 Evolutionary Distance

By evolutionary distance, what I mean is that we want to find out how long ago they branched off from
a common ancestor. The assumption we will make is that the number of edits between the DNA of two

2



organisms is representative of the amount of time it took for these two organisms to evolve in different
directions.

To do so, we’ll use an algorithm called the Levenshtein Edit Distance algorithm. This is a well-documented
algorithm, so exercise your research skills and learn it for yourself. You have discretion over what kind
of input and output your program should take in. Theoretically, your code should work and be able to
calculate a distance for each of the 4 organisms (6 pairs) of calculations. To save you on computation time,
email me the edit distance between the two words in the editdistance.scm file and you will receive the
numbers you will require as input to the next section.

3.2 UPGMA

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) is a method used to build these phyloge-
netic trees. This method uses a key assumption known as the Molecular Clock Hypothesis1. This hypothesis
assumes that the rate of mutation in a genome is relatively constant. In other words, different branches of
the tree are going to undergo evolutionary changes at that constant rate. Although this assumption is valid
in many situations, there are also cases where the assumption is not kept. These deviations from the clock
hypothesis are outside the scope of our computer science course, but they are interesting and and the linked
wikipedia article goes into more details. For this project, we will make this assumption and adopt UPGMA
as our tree-building technique.

UPGMA is a well-document algorithm, and so once you have your distances, you should run these dis-
tances through the UPGMA algorithm and build the tree. For more information on how to implement this
method, Google and Wikipedia are your best friends.

The 4 organisms, HIV1, HIV2, SIV, and FIV, you’re building a tree of are all retroviruses. Specifically, they
are immunodeficiency viruses that infect Humans, Simians, and Felines. Your program may take any input
or output that represents the problem clearly. Think about how you want to structure the input and outputs
of your program.

1http://en.wikipedia.org/wiki/Molecular_clock

3

http://en.wikipedia.org/wiki/Molecular_clock

	Background
	Reassembly
	Background
	Our Abstraction and Algorithm
	Problem Analysis

	Phylogenetic Tree Construction
	Evolutionary Distance
	UPGMA


