CS61A Midterm 3 Review – Spring, 2004

1. Consider a procedure (updated table name new-value) where updated takes in a name, a new-value and a table of name-value pairs (containing no duplicate names), and returns a new table either with the new name-value entry added if name doesn’t already exist in the table, or a new table with the given new-value for the pre-existing entry associated with name.
(updated ‘((mike 3) (jon 7)) ‘paul 10) ==> ((mike 3) (jon 7) (paul 10))

(updated ‘((mike 3) (jon 7)) ‘mike 10) ==> ((mike 10) (jon 7))
Write the non-destructive version of updated:
(define (updated table name new-value)

Of course, this was before we knew the pleasures of mutation, and so was wasteful – we reconstruct a new table each time! We propose a destructive updated!, where we allocate new pairs only if there’s no pre-existing entry with the same name. Implement this below:
(define (updated! table name new-value)

2. This is an attempt to write (remove-first! ls x), which destructive removes the first instance of x:

(define (remove-first! ls x)

(cond ((null? ls) ‘())

((eq? (car ls) x) (set! ls (cdr ls)))

((eq? (cadr ls) x) (set-cdr! ls (cddr ls)))

(else (remove-first! (cdr ls) x))))

Suppose (define L ‘(a b c)). What happens to L when we do:

a. (remove-first! L ‘a)
L ==> __________________________

b. (remove-first! L ‘b)

L ==> __________________________

c. (remove-first! L ‘z)

L ==> __________________________

3. Consider this problem:
(define p

(let ((x #f))

(set! x 1)

(lambda (n)

(lambda ()

(set! n (+ n 1))

(set! x (+ x n))

x))))

(define m 3)

(define p1 (p m))

(define p2 (p m))

(p1)

(p2)

(p1)
a. Draw out the-global-environment after the last define statement using box-and-pointer diagrams. Don’t draw more boxes than there are, and don’t forget the procedure environments!
b. What is returned after the last statement?
4. Fill in the blanks:

(define foo

(let ((L (list 1)))

(lambda (a)

(let ((M (cons a L)))

(lambda (b)

(set! L (cons (+ a 1) L))

(set! a (+ a 2))

(set-car! (cdr M) (+ 3 (cadr M)))

(set! b (+ b 4))

(list a b L M))))))

Stk> (define f (foo 1))
Stk> (f 2)

Stk> (define g (foo 2))
Stk> (g 1)

Stk> (f 2)

Stk> (g 1)

5. There are just too many things to do and too much to keep track of during midterms week. We’d like to implement a system that helps us keep track of what we need to do. To that end, we propose a job class. A job object is a certain amount of work required; you can do some amounts of work until the work is done. A job also has an automatically assigned id. A job is “done” when there’s no more work to do for that job. We also want to keep track of number of jobs we’ve created. We’d like to interact this way:
STk> (define job1 (instantiate job ‘(take out trash) 10))

job1

STk> (define job2 (instantiate job ‘(eat dinner) 5))

job2

STk> (define job3 (instantiate job ‘(study for cs61a) 100000))

job3

STk> (ask job1 ‘id)

0

STk> (ask job2 ‘id)

1

STk> (ask job2 ‘work-to-do)

5

STk> (ask job1 ‘do-work 10)

okay

STk> (ask job1 ‘work-to-do)

0

STk> (ask job1 ‘done?)

#t

STk> (ask job1 ‘do-work 10)

(but you are already done!)

STk> (ask job ‘number-of-jobs)

3

(define-class (job description work-to-do)

6. What are the possible values of x after the following is executed:

(define x 10)
(parallel-execute (lambda() (set! x (+ 5 x)) (set! x (* x 3)))

(lambda() (if (> x 16)

 (set! x 100)

 (set! x (- x 20)))))
7. Right now, the Scheme2 evaluator doesn't care how many arguments you pass into a compound procedure:

Scheme2: (define square (lambda(x) (* x x)))
Scheme2: (square 3 4 5)
9

We'd like to throw an error when the wrong number of arguments is passed:

Scheme2: (square 3 4 5)
Error: Wrong number of arguments!

We propose the following three ways of implementing this. For each implementation, say if it will work or not, and if not, briefly explain why not.

a. (define (eval-1 exp env)

(cond ((constant? exp) exp)

...

((pair? exp)

 (if (not (equal? (length (proc-params (car exp)))

 (length (cdr exp))))

 (error "Wrong number of arguments")

 (apply-1 (eval-1 (car exp))

 (map (lambda(e) (eval-1 e env)) (cdr exp)))))

...))
b. (define (apply-1 proc args)
(cond (...)

((lambda-proc? proc)

 (if (not (equal? (length (proc-params proc))

 (length (cdr exp))))

 (error "Wrong number of arguments")

 (eval-1 (proc-body proc)

 (extend-environment ...))))

...))
c. (define (extend-environment params args env)
 (if (not (equal? (length params) (length args)))
 (error "Wrong number of arguments")
 (...)))

