PAGE
1

CS61A Notes 01 – Scheme basics, order of evaluation [Solutions v1.0]
Applicative vs. Normal Order

QUESTIONS

1. Above, applicative order was more efficient. Define a procedure where normal order is more efficient.

Anything where not evaluating the arguments will save time works. Most trivially,

(define (f x) 3) ;; a function that always returns 3

When you call (f (fib 10000)), applicative order would choke, but normal order would just happily drop (fib 10000) and just return 3.
2. Evaluate this expression using both applicative and normal order: (square (random x)). Will you get the same result? Why or why not?
Unless you’re lucky, the result will be quite different. Expanding to normal order, you have (* (random x) (random x)), and the two separate calls to random will probably return different values.
3. Consider a magical function count that takes in no arguments, and each time it is invoked, it returns 1 more than it did before, starting with 1. Therefore, (+ (count) (count)) will return 3. Evaluate (square (square (count))) with both applicative and normal order; explain your result.

For applicative order, (count) is only called once – returns 1 – and is squared twice. So you have (square (square 1)), which evaluates to 1.

For normal order, (count) is called FOUR times:

(* (square (count)) (square (count))) ==>

(* (* (count) (count)) (* (count) (count))) ==>

(* (* 1 2) (* 3 4)) ==>

24
Yoshimi Battles the Pink Recursive Robots

QUESTIONS

1. Write a procedure (expt base power) which implements the exponents function. For example, (expt 3 2) returns 9, and (expt 2 3) returns 8.

(define (expt base power)

(if (= power 0)

 1

 (* base (expt base (- power 1)))))
2. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many ways can I go up this flight of stairs? Write a procedure count-stair-ways that solves this for me.
(define (count-ways n)

(cond ((= n 0) 1)

((< n 0) 0)

(else (+ (count-ways (- n 1))

(count-ways (- n 2))))))
3. I have a bag of n oranges and m apples. If I eat them one at a time (my mouth being big enough for only 1), how many ways can I finish all the oranges and applies?

(define (count-ways n m)

(cond ((or (= n 0) (= m 0)) 1)

(else (+ (count-ways n (- m 1))

(count-ways (- n 1) m)))))
4. I’m standing at the origin of some x-y coordinate system for no reason when a pot of gold dropped onto the point (x, y). I would love to go get that gold, but because of some painful disabilities or (most likely) mental derangement, I could only move right or up one unit at a time on this coordinate system. I’d like to find out how many ways I can reach (x, y) from the origin in this fashion (because, umm, my mother asked). Write count-ways that solves this for me.
(define (count-ways x y)

(cond ((or (= x 0) (= y 0)) 1)

(else (+ (count-ways x (- y 1))

(count-ways (- x 1) y)))))

NOTE: It’s the exact thing as #3! Why?
5. Define a procedure subsent that takes in a sentence and a parameter i, and returns a sentence with elements starting from position i to the end. The first element has i = 0. In other words,

STk> (subsent ‘(6 4 2 7 5 8) 3)

(7 5 8)
(define (subsent sent i)

(cond ((= i 0) sent)

(else (subsent (bf sent) (- i 1)))))

Note that we’re assuming i is valid (or, not larger than length of the sentence).
6. Define a procedure sum-of-sents that takes in two sentences and outputs a sentence containing the sum of respective elements from both sentences. The sentences do not have to be the same size!

STk> (sum-of-sents ‘(1 2 3) ‘(6 3 9))

(7 5 12)

STk> (sum-of-sents ‘(1 2 3 4 5) ‘(8 9))

(9 11 3 4 5)

(define (sum-of-sents s1 s2)

(cond ((empty? s1) s2)

((empty? s2) s1)

(else (se (+ (first s1) (first s2))

 (sum-of-sents (bf s1) (bf s2))))))
