PAGE
5

CS61A Notes 02 – Procedure As Data [Solutions v1.0]
What in the World is lambda?

QUESTIONS: What do the following evaluate to?

(lambda (x) (* x 2))

#[closure arglist=(x) e16fd0]

((lambda (y) (* (+ y 2) 8)) 10)

96
((lambda (b) (* 10 ((lambda (c) (* c b)) b))) ((lambda (e) (+ e 5)) 5))

1000
((lambda (a) (a 3)) (lambda (z) (* z z)))

9
((lambda (n) (+ n 10))

 ((lambda (m) (m ((lambda(p) (* p 5)) 7))) (lambda (q) (+ q q))))

80
Procedures As Arguments

QUESTIONS

1. What does this guy evaluate to?
((lambda(x) (x x)) (lambda(y) 4))

4
2. What about his new best friend?
((lambda(y z) (z y)) * (lambda(a) (a 3 5)))

15
3. Write a procedure, foo, that, given the call below, will evaluate to 10.

((foo foo foo) foo 10)

(define (foo x y) y)

4. Write a procedure, bar, that, given the call below, will evaluate to 10 as well.

(bar (bar (bar 10 bar) bar) bar)
(define (bar x y) x)

5. Okay, now, a really easy one: What does the following evaluate to?

((lambda(f x) (f f x))

(lambda(k n)

(if (< n 2)

 1

 (* n (k k (- n 1)))))

4)
Just kidding; this is really hard. It’s actually our favorite procedure – fact! This call is going to return the factorial of 4. Note that the procedure is recursive – it calls itself, without using a define statement! Such things are called Y-combiners; but don’t worry about it for now.

6. Something easy: write first-satisfies that takes in a predicate procedure and a sentence, and returns the first element that satisfies the predicate test. Return #f if none satisfies the predicate test. For example, (first-satisfies even? ‘(1 2 3 4 5)) returns 2, and (first-satisfies number? ‘(a clockwork orange)) returns #f.

(define (first-satisfies pred? sent)

(cond ((empty? sent) #f)

((pred? (first sent)) (first sent))

(else (first-satisfies pred? (bf sent)))))
Procedures As Return Values

QUESTIONS
1. In lecture, you were introduced to the procedure keep, which takes in a predicate procedure and a sentence, and throws away all words of the sentence that doesn’t satisfy the predicate. The code for keep was:

(define (keep pred? sent)

(cond ((empty? sent) ‘())

((pred? (first sent))

 (sentence (first sent) (keep pred? (bf sent))))

(else (keep pred? (bf sent)))))
Recall that Brian said to keep numbers less than 6, this wouldn’t work:

(keep (< 6) ‘(4 5 6 7 8))

a. Why doesn’t the above work?

As we discussed in lecture, (< 6) evaluates to #t, not a procedure, since keep requires a procedure, it fails miserably.
b. Of course, this being Berkeley, and us being rebels, we’re going to promptly prove the authority figure – the Professor himself – wrong. And just like some rebels, we’ll do so by cheating. Let’s do a simpler version; suppose we’d like this to do what we intended:

(keep (lessthan 6) ‘(4 5 6 7 8))

Define procedure lessthan to make this legal.

The insight is that (lessthan 6) must return a procedure. In fact, it must return a procedure that checks if a given number is less than 6. So...
(define (lessthan n)

(lambda(x) (< x n)))
c. Now, how would we go about making this legal?

(keep (< 6) ‘(4 5 6 7 8))

The tricky thing here is that (< 6) must also return a procedure as we did up there. That requires us to redefine what ‘<’ is, since ‘<’ the primitive procedure obviously doesn’t return a procedure.
(define (< n)

(lambda(x) (> n x)))

Note also that we can’t use ‘<’ in the body as a primitive!
2. Write a procedure exponents function, (f-expt func power) that returns a procedure which is equivalent to func applied power times. Assume func takes in only a single argument. For example, ((f-expt square 3) 2) ==> 256, because (square (square (square 2))) is 256.

This is pretty hard. Consider writing the normal numeric exponents:

(define (expt base power)

(if (= power 0)

 1

 (* base (expt base (- power 1)))))

So, if power is 0, we have what’s called the “identity” – 1. That is, raising something to the power of 0 returns the identity. Similarly, raising a function to the power of 0 should return the “identity function”, which is a function that doesn’t do anything to the argument. It makes sense – applying a function zero times is like not applying it at all.

In the recursive case, we’ll want to apply the function power-1 times first (through recursion), and then apply it one more time.

(define (f-expt func power)

(if (= power 0)

 (lambda(x) x)

 (lambda(x) (func ((f-expt func (- power 1)) x)))))
3. We’re going to play hide-and-go-seek. Let’s say, a “seeker” is a procedure that takes in a sentence, and seeks out a certain word in the sentence. It returns the word if the word is found, or #f otherwise. For example, if we have a 4-seeker, a seeker that seeks out the number 4, then

(4-seeker ‘(1 2 3 4 5)) ==> 4

(4-seeker ‘(1 2 3)) ==> #f
A seeker-producer is a procedure that takes in an element x and returns a procedure (a “seeker”) that takes in a sentence sent and returns x if the element x is in the sentence sent, and #f otherwise.

a. Make a call to seeker-producer to find out if 4 is in the list ‘(9 3 5 4 1 0). seeker-producer is the only procedure you can use! What does it return?

((seeker-producer 4) ‘(9 3 5 4 1 0)). This should return 4.
b. Implement seeker-producer, using the handy-dandy procedure member?.

(define (seeker-producer x)

(lambda(sent) (if (member? x sent) x #f)))
c. Implement seeker-producer, using an internal define, but not using member?.

(define (seeker-producer x)

(define (helper sent)

(cond ((empty? sent) #f)

((equal? x (first sent)) x)

(else (helper (bf sent)))))

helper)

d. Implement seeker-producer, not using internal defines or member?.

(define (seeker-producer x)

(lambda(sent)

(cond ((empty? sent) #f)

((equal? x (first sent)) x)

(else ((seeker-producer x) (bf sent))))))

The trick is in the recursive call; note we’re using seeker-producer as we did in part a!
e. Of course, it’s not much of a game if we can’t hide! A hider of a word is a procedure that takes in a sentence and “hides” the word behind an asterisk if it exists. For example, if we have a 4-hider, a hider that hides the number 4, then

(4-hider ‘(1 2 3 4 5)) ==> (1 2 3 *4 5)

Write a procedure hider-producer that takes in an element y, and returns a procedure (a “hider”) that takes in a sentence sent and returns the same sentence with element y “hidden” behind an asterisk, if it exists.
You’ll probably want to use every to help you.

(define (hider-producer x)

(lambda(sent)

(every (lambda(w)

(if (equal? w x) (word ‘* w) w))

 sent)))
f. Oh no! Now a hider can fool your seeker! Consider this call:

(4-seeker (4-hider ‘(1 2 3 4 5)))

==> #f (make sure you know why!)
Surely you will not be outdone by yourself. Write a procedure, super-seeker-producer that takes in a procedure produced by seeker-producer (that is, a seeker), and returns a super-seeker that will not be fooled by hider:
((super-seeker-producer 4-seeker) (4-hider ‘(1 2 3 4 5))) ==> 4

You can use every if you want. You might also find these procedures useful:

(define (hidden? w) (equal? (first w) ‘*))

(define (unhide w)

(if (hidden? w) (bf w) w))
(define (super-seeker-producer seeker)

(lambda(sent) (seeker (every unhide sent))))
g. Write super-hider-producer that takes in a hider and returns a super-hider so that it still manages to hide the element from a super-seeker.

((super-hider-producer 4-hider) ‘(3 4 5)) ==> (3 **4 5)

((super-seeker-producer 4-seeker)
 ((super-hider-producer 4-hider) ‘(1 2 3 4 5))) ==> #f

The strategy will be to hide the element we want to hide TWICE. You can use every or hidden? or first-satisfies or whatever else we’ve already defined.

(define (super-hider-producer hider)

(lambda(sent)

((hider-producer (first-satisfies hidden? (hider sent)))

(hider sent))))
h. Sure, we can write a super-super-seeker-producer, and follow that up with a super-super-hider-producer, but this is getting annoying and this problem has long outstayed its welcome. So instead, let’s write the ultimate-hider-producer which takes in a SEEKER (not a hider!), and returns an ultimate-hider that hides what the seeker seeks by REMOVING it from the sentence. So,

((ultimate-hider-producer 4-seeker) ‘(1 2 3 4 5)) ==> ‘(1 2 3 5)
You can use every or hidden? or whatever we’ve already defined.
(define (ultimate-hider-producer seeker)

(lambda(sent) (remove (seeker sent) sent)))
The moral? Hiders always win. Copping out is the best strategy.
Chung Wu; CS61A, Spring 2004

