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CS61A Notes 03 – Efficiency (v1.0)
Recursive vs. Iterative Processes

The Professor did a good job explaining this, so just a few brief points:

· Don’t confuse “recursive procedures” and “recursive processes”.  A “recursive procedure” refers to the simple fact that a procedure calls itself somewhere within its body.  A “recursive process” refers to the fact that the space a procedure occupies as it runs grows – it needs to remember additional state as it recurses.  The former certainly does not imply the latter; therefore, a recursive procedure can generate an iterative process.

· The basic difference between recursive and iterative processes is that, for an iterative process, after some recursive call reaches the base case and returns, there is nothing left to be done.  For a recursive process, after some recursive call reaches the base case and returns, there is still work to do.  For example, for (factorial 4), after reaching the base case, you still need to apply the chain of multiplications (* 4 (* 3 (* 2 1))).
· Here’s how you can tell:  if the last thing a function does is make the recursive call, then the function should be an iterative process.  If the function still has things to do after the recursive call, then it is a recursive process.

· The Big Simulation Of Recursive/Iterative Processes (the fun never ends)

· Understand the fib-iter procedure provided in SICP on page 39, and be able to tell why it is more efficient than the way we used to do fib.
QUESTIONS: Will the following generate a recursive or iterative process?

1. (define (foo x)



(* (- (+ (/ x 3) 4) 6) 2))

2. (define (foo x)



(if (= x 0) 0 (+ x (foo (- x 1))))

3. (define (helper1 x)



(if (= x 0) 1 (helper1 (- x 1))))


(define (helper2 x)



(if (= x 0) 1 (+ 1 helper2 (- x 1))))

a. (define (bar x)



(if (even? x) (helper1 (- x 1)) (helper1 (- x 2))))

b. (define (bar x)



(if (even? x) (helper2 (- x 1)) (helper2 (- x 2))))

c. (define (bar x)


(if (= x 0) (helper2 x) (helper1 x)))

d. (define (bar x)


(if (= x 0) (helper1 x) (helper2 x)))

e. (define (bar x)


(cond ((= x 0) 1)




((= (helper2 x) 3) 5)




(else (helper1 x))))

f. (define (bar x)

(helper2 (helper1 x)))
Yoshimi Battles The Recursive Robots, Pt. 2

1. Consider the “subset-sum” problem: you are given a sentence of integers and a number k.  Is there a subset of the sentence that add up to k?  For example,

(subset-sum ‘(2 4 7 3) 5) ==> #t, since 2+3=5.

(subset-sum ‘(1 9 5 7 3) 2) ==> #f.

2. There is something called a “falling factorial”.  (falling n k) means that k consecutive numbers should be multiplied together, starting from n and working downward.  For example, (falling 7 3) means 7 * 6 * 5.  Write the procedure falling that generates an iterative process.
3. Write a version of (expt base power) that works with negative powers as well.
4. Implement (ab+c a b c) that takes in values a, b, c and returns (a*b) + c.  However, you cannot use *.  Make it a recursive process.  (The problem ripped from Greg’s notes)

5. Implement (ab+c a b c) as an iterative process.  Don’t define helper procedures.
Orders of Growth

When we talk about the efficiency of a procedure (at least for now), we’re often interested in how much more expensive it is to run the procedure with a larger input.  That is, as the size of the input grows, how do the speed of the procedure and the space its process occupies grow?

For expressing all of these, we use what is called the Big-Theta notation.  For example, if we say the running time of a procedure foo is in Θ(n2), we mean that the time it takes to process the input grows as the square of the size of the input.  More generally, we can say that foo is in some Θ(f(n)) if there exists some constants k1 and k2 such that and some constants c1 and c2 such that, 

k1 * f(n) < running time of foo for some n > c1, and

k2 * f(n) > running time of foo for some n > c2
To prove, then, that foo is in Θ(f(n)), we only need to find constants k1 and k2 where the above holds.  Fortunately for you, in 61A, we’re not that concerned with rigor, and you probably won’t need to know exactly how to do this (you will get the painful details in 61B!)  What we want you to have in 61A, then, is the intuition of guessing the orders of growth for certain procedures. 

Kinds of Growth

Here are some common ones: Θ(1) – constant time (takes the same amount of time irregardless of input size); Θ(log n) – logarithmic time; Θ(n) – linear time; Θ(n2), Θ(n3), etc – polynomial time; Θ(2n) – exponential time (“intractable”; these are really, really horrible).
Orders of Growth in Space

“Space” refers to how much information a process must remember before it can complete.  If you’ll recall, the advantage of an iterative process is that it does not have to keep any information on the stack as it executes. So an iterative process always occupies a constant amount of space – Θ(1).

For a recursive process, the space it occupies tends to grow with the number of recursive calls.  For example, for the factorial procedure, every time before we make a recursive call, we need to “remember” to multiply (fact (- n 1)) by n.  Since we’ll make n recursive calls, we’ll need to remember n such facts.  So the orders of growth in space for the factorial function is Θ(n).

Orders of Growth in Time
“Time”, for us, basically refers to the number of recursive calls.  Intuitively, the more recursive calls we make, the more time it takes to execute the function.

A few things to note:

· If the function contains only primitive procedures like + or *, then it is constant time – Θ(1).  An example would be (define (plusone x) (+ x 1))
· If the function is recursive, you need to:
1. count the number of recursive calls there will be given input n

2. count how much time it takes to process the input per recursive call
The answer is usually the product of the above two.  For example, given a fruit basket with 10 apples, how long does it take for me to process the whole basket?  Well, I’ll recursively call my eat procedure which eats one apple at a time (so I’ll call the procedure 10 times).  Each time I eat an apple, it takes me 30 minutes.  So the total amount of time is just 30*10 = 300 minutes!

· If the function contains calls of helper functions that are not constant-time, then you need to take the orders of growth of the helper functions into consideration as well.  In general, how much time the helper function takes would be factored into #2 above.  (If this is confusing – and it is – try the examples below)

· When we talk about orders of growth, we don’t really care about constant factors.  So if you get something like Θ(1000000n), this is really Θ(n).  (Why?  Can you use the definition of the Big-Theta notation given above to prove this?)

· We can also usually ignore lower-order terms.  For example, if we get something like Θ(n3 + n2 + 4n + 399), we take it to be Θ(n3).  (Again, why?)

 Let’s try some:
QUESTIONS: What is the order of growth in time for:

1. (define (fact x) 


(if (= x 0) 

 1 
 (* x (fact (- x 1)))))

2. (define (fact-iter x answer)


(if (= x 0)

 answer

 (fact-iter (- x 1) (* answer x))))

3. (define (sum-of-facts x n)

(if (= n 0)

 0

 (+ (fact x) (sum-of-facts x (- n 1)))))

4. (define (fib n)


(if (<= n 1)

 1

 (+ (fib (- n 1)) (fib (- n 2)))))

5. (define (square n)

(cond
((= n 0) 0)



   
((even? n) (* (square (quotient n 2)) 4))



    
(else (+ (square (- n 1)) (- (+ n n) 1))) ) )
6. (define (gcd x y)
<======= This is hard!



(if (= y 0)




x




(gcd y (remainder x y))))
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