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CS61A Notes 03 – Efficiency [Solutions v1.0]
Recursive vs. Iterative Processes

QUESTIONS: Will the following generate a recursive or iterative process?

1. (define (foo x)



(* (- (+ (/ x 3) 4) 6) 2))

It’s not a recursive procedure, so it’s pretty pointless to ask what kind of process it generates
2. (define (foo x)



(if (= x 0) 0 (+ x (foo (- x 1))))


Recursive
3. (define (helper1 x)



(if (= x 0) 1 (helper1 (- x 1)))) <== Iterative!

(define (helper2 x)



(if (= x 0) 1 (+ 1 helper2 (- x 1)))) <== Recursive!
a. (define (bar x)



(if (even? x) (helper1 (- x 1)) (helper1 (- x 2))))


Iterative
b. (define (bar x)



(if (even? x) (helper2 (- x 1)) (helper2 (- x 2))))


Recursive
c. (define (bar x)


(if (= x 0) (helper2 x) (helper1 x)))

Iterative (when x is 0, (helper2 0) returns immediately!)
d. (define (bar x)


(if (= x 0) (helper1 x) (helper2 x)))

Recursive
e. (define (bar x)


(cond ((= x 0) 1)




((= (helper2 x) 3) 5)




(else (helper1 x))))

Recursive
f. (define (bar x)

(helper2 (helper1 x)))



Recursive
Yoshimi Battles The Recursive Robots, Pt. 2

1. Consider the “subset-sum” problem: you are given a sentence of integers and a number k.  Is there a subset of the sentence that add up to k?  For example,

(subset-sum ‘(2 4 7 3) 5) ==> #t, since 2+3=5.

(subset-sum ‘(1 9 5 7 3) 2) ==> #f.

(define (subset-sum? nums k)

(cond ((= k 0) #t)




((empty? nums) #f)




((< k 0) #f)




(else (or (subset-sum? (bf nums) k)







 (subset-sum? (bf nums) (- k (first nums)))))))
2. There is something called a “falling factorial”.  (falling n k) means that k consecutive numbers should be multiplied together, starting from n and working downward.  For example, (falling 7 3) means 7 * 6 * 5.  Write the procedure falling that generates an iterative process.

(define (falling b n)


(define (helper b n ans)



(if (= n 1)




 (* b ans)




 (helper (- b 1) (- n 1) (* b ans))))


(helper b n 1))

3. Write a version of (expt base power) that works with negative powers as well.

(define (expt base power)


(cond ((= power 0) 1)




((> power 0) (* base (expt base (- power 1))))




(else (/ (expt base (+ power 1)) base))))
4. Implement (ab+c a b c) that takes in values a, b, c and returns (a*b) + c.  However, you cannot use *.  Make it a recursive process.  (The problem ripped from Greg’s notes)

(define (ab+c a b c)


(if (= b 0)



 c



 (+ a (ab+c a (- b 1) c))))

Yes, this assumes b is positive.  So sue me.  What should you do if b is negative?
5. Implement (ab+c a b c) as an iterative process.  Don’t define helper procedures.

(define (ab+c a b c)


(if (= b 0)



 c



 (ab+c a (- b 1) (+ c a))))
Orders of Growth

QUESTIONS: What is the order of growth for time for:

1. (define (fact x) 

(if (= x 0) 

1 
(* x (fact (- x 1)))))

Time: O(n), since we subtract 1 from x each time
2. (define (fact-iter x answer)

(if (= x 0)


answer


(fact-iter (- x 1) (* answer x))))


Time: O(n)
3. (define (sum-of-facts x n)
(if (= n 0)


0


(+ (fact x) (sum-of-facts x (- n 1)))))

Time: O(xn), since we have to call sum-of-facts n times, and each time we have to calculate (fact x), which takes O(x)
4. (define (fib n)

(if (<= n 1)


1


(+ (fib (- n 1)) (fib (- n 2)))))

Time: O(2^n), since we make two recursive calls each time (draw out the recursion tree and convince yourself)
5. (define (square n)
(cond
((= n 0) 0)



    ((even? n) (* (square (quotient n 2)) 4))



    (else (+ (square (- n 1)) (- (+ n n) 1))) ) )
Time: O(log n); we cut down the input size by half each time it’s even.  When it’s odd, we make one extra recursive call, but then, once we do (- n 1), it’s even again, and we get to cut it in half.
6. (define (gcd x y)
<======= This is hard!



(if (= y 0)




x




(gcd y (remainder x y))))


Time: O(log n); we cut down the size of “x” by half in at most two recursive calls.  First, note that every time we make a recursive call, we put y as the “new” x.  There are two cases:

1. y < x/2; then, obviously, in the next recursive call, the “new” x (which will be y) will be less than x/2.

2. x/2 < y < x; then, in two recursive calls, the “new” x (which will be (remainder x y)) will be less than x/2.  Think about that carefully: if x/2 < y, then (remainder x y) < x/2.

Don’t worry if you don’t get the above; it’s kind of out of this course’s scope.  You’ll learn all about it in CS70.
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