
CS61A Notes 02 – Procedure As Data [Solutions v1.0]
What in the World is lambda?

QUESTIONS: What do the following evaluate to?

(lambda (x) (* x 2))
#[closure arglist=(x) e16fd0]

((lambda (y) (* (+ y 2) 8)) 10)
96

((lambda (b) (* 10 ((lambda (c) (* c b)) b))) ((lambda (e) (+ e 5)) 5))
1000

((lambda (a) (a 3)) (lambda (z) (* z z)))
9

((lambda (n) (+ n 10))
 ((lambda (m) (m ((lambda(p) (* p 5)) 7))) (lambda (q) (+ q q))))
80

Procedures As Arguments

QUESTIONS

1. What does this guy evaluate to?
((lambda(x) (x x)) (lambda(y) 4))
4

2. What about his new best friend?
((lambda(y z) (z y)) * (lambda(a) (a 3 5)))
15

3. Write a procedure, foo, that, given the call below, will evaluate to 10.
((foo foo foo) foo 10)
(define (foo x y) y)

4. Write a procedure, bar, that, given the call below, will evaluate to 10 as well.
(bar (bar (bar 10 bar) bar) bar)
(define (bar x y) x)

5. Something easy: write first-satisfies that takes in a predicate procedure and a sentence, and
returns the first element that satisfies the predicate test. Return #f if none satisfies the predicate
test. For example, (first-satisfies even? ‘(1 2 3 4 5)) returns 2, and (first-
satisfies number? ‘(a clockwork orange)) returns #f.

(define (first-satisfies pred? sent)
(cond ((empty? sent) #f)

((pred? (first sent)) (first sent))
(else (first-satisfies pred? (bf sent)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

1

Procedures As Return Values

QUESTIONS

1. In lecture, you were introduced to the procedure keep, which takes in a predicate procedure and a
sentence, and throws away all words of the sentence that doesn’t satisfy the predicate. The code for
keep was:

(define (keep pred? sent)
(cond ((empty? sent) ‘())

((pred? (first sent))
 (sentence (first sent) (keep pred? (bf sent))))
(else (keep pred? (bf sent)))))

Recall that Brian said to keep numbers less than 6, this wouldn’t work:
(keep (< 6) ‘(4 5 6 7 8))
a. Why doesn’t the above work?

As we discussed in lecture, (< 6) evaluates to #t, not a procedure,
since keep requires a procedure, it fails miserably.

b. Of course, this being Berkeley, and us being rebels, we’re going to promptly prove the authority
figure – the Professor himself – wrong. And just like some rebels, we’ll do so by cheating. Let’s
do a simpler version; suppose we’d like this to do what we intended:

(keep (lessthan 6) ‘(4 5 6 7 8))
Define procedure lessthan to make this legal.

The insight is that (lessthan 6) must return a procedure. In fact,
it must return a procedure that checks if a given number is less
than 6. So...

(define (lessthan n)
(lambda(x) (< x n)))

c. Now, how would we go about making this legal?
(keep (< 6) ‘(4 5 6 7 8))
The tricky thing here is that (< 6) must also return a procedure as
we did up there. That requires us to redefine what ‘<’ is, since
‘<’ the primitive procedure obviously doesn’t return a procedure.

(define (< n)
(lambda(x) (> n x)))

Note also that we can’t use ‘<’ in the body as a primitive!

2. Write a procedure exponents function, (f-expt func power) that returns a procedure which is
equivalent to func applied power times. Assume func takes in only a single argument. For
example, ((f-expt square 3) 2) ==> 256, because (square (square (square 2)))
is 256.

This is pretty hard. Consider writing the normal numeric exponents:

Ahmed Owainati CS61A; courtesy of Chung Wu

2

(define (expt base power)
(if (= power 0)

 1
 (* base (expt base (- power 1)))))

So, if power is 0, we have what’s called the “identity” – 1. That is,
raising something to the power of 0 returns the identity. Similarly,
raising a function to the power of 0 should return the “identity
function”, which is a function that doesn’t do anything to the
argument. It makes sense – applying a function zero times is like not
applying it at all.

In the recursive case, we’ll want to apply the function power-1 times
first (through recursion), and then apply it one more time.

(define (f-expt func power)
(if (= power 0)

 (lambda(x) x)
 (lambda(x) (func ((f-expt func (- power 1)) x)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

3

