
CS61A Notes 03 – Efficiency (and Applicative vs. Normal) [Solutions v1.0]
Applicative vs. Normal Order

QUESTIONS
1. Above, applicative order was more efficient.  Define a procedure where normal order is more 

efficient.

Anything where not evaluating the arguments will save time works.  Most 
trivially,

(define (f x) 3) ;; a function that always returns 3

When you call (f (fib 10000)), applicative order would choke, but 
normal order would just happily drop (fib 10000) and just return 3.

2. Evaluate this expression using both applicative and normal order: (square (random x)).  Will 
you get the same result?  Why or why not?

Unless you’re lucky, the result will be quite different.  Expanding to 
normal order, you have (* (random x) (random x)), and the two separate 
calls to random will probably return different values.

3. Consider a magical function count that takes in no arguments, and each time it is invoked, it 
returns 1 more than it did before, starting with 1.  Therefore, (+ (count) (count)) will return 
3. Evaluate (square (square (count))) with both applicative and normal order; explain your 
result.

For applicative order, (count) is only called once – returns 1 – and is 
squared twice.  So you have (square (square 1)), which evaluates to 1.

For normal order, (count) is called FOUR times:

(* (square (count)) (square (count))) ==>
(* (* (count) (count)) (* (count) (count))) ==>
(* (* 1 2) (* 3 4)) ==>
24

Recursive vs. Iterative Processes

QUESTIONS: Will the following generate a recursive or iterative process?

1. (define (foo x)
(* (- (+ (/ x 3) 4) 6) 2))

It’s not a recursive procedure, so it’s pretty pointless to ask what 
kind of process it generates

2. (define (foo x)
(if (= x 0) 0 (+ x (foo (- x 1))))

Recursive
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3. (define (helper1 x)
(if (= x 0) 1 (helper1 (- x 1)))) <== Iterative!

(define (helper2 x)
(if (= x 0) 1 (+ 1 helper2 (- x 1)))) <== Recursive!

a. (define (bar x)
(if (even? x) (helper1 (- x 1)) (helper1 (- x 2))))

Iterative

b. (define (bar x)
(if (even? x) (helper2 (- x 1)) (helper2 (- x 2))))

Recursive

c. (define (bar x)
(if (= x 0) (helper2 x) (helper1 x)))

Iterative (when x is 0, (helper2 0) returns immediately!)

d. (define (bar x)
(if (= x 0) (helper1 x) (helper2 x)))

Recursive

e. (define (bar x)
(cond ((= x 0) 1)

((= (helper2 x) 3) 5)
(else (helper1 x))))

Recursive

f. (define (bar x)
(helper2 (helper1 x)))

Recursive

Yoshimi Battles The Recursive Robots, Pt. 2

1. There is something called a “falling factorial”.  (falling n k) means that k consecutive numbers 
should be multiplied together, starting from n and working downward.  For example, (falling 7 
3) means 7 * 6 * 5.  Write the procedure falling that generates an iterative process.
(define (falling b n)

(define (helper b n ans)
(if (= n 1)

 (* b ans)
 (helper (- b 1) (- n 1) (* b ans))))

(helper b n 1))

2. Write a version of (expt base power) that works with negative powers as well.
(define (expt base power)

(cond ((= power 0) 1)
((> power 0) (* base (expt base (- power 

1))))
(else (/ (expt base (+ power 1)) base))))
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3. Implement (ab+c a b c) that takes in values a, b, c and returns (a*b) + c.  However, you 
cannot use *.  Make it a recursive process.  (The problem ripped from Greg’s notes)
(define (ab+c a b c)

(if (= b 0)
 c
 (+ a (ab+c a (- b 1) c))))

Yes, this assumes b is positive.  So sue me.  What should you do if b 
is negative?

4. Implement (ab+c a b c) as an iterative process.  Don’t define helper procedures.
(define (ab+c a b c)

(if (= b 0)
 c
 (ab+c a (- b 1) (+ c a))))

Orders of Growth

QUESTIONS: What is the order of growth for time for:

1. (define (fact x) 
(if (= x 0) 
1 
(* x (fact (- x 1)))))

Time: O(n), since we subtract 1 from x each time

2. (define (fact-iter x answer)
(if (= x 0)

answer
(fact-iter (- x 1) (* answer x))))

Time: O(n)

3. (define (sum-of-facts x n)
(if (= n 0)

0
(+ (fact x) (sum-of-facts x (- n 1)))))

Time: O(xn), since we have to call sum-of-facts n times, and each time 
we have to calculate (fact x), which takes O(x)

4. (define (fib n)
(if (<= n 1)

1
(+ (fib (- n 1)) (fib (- n 2)))))

Time: O(2^n), since we make two recursive calls each time (draw out the 
recursion tree and convince yourself)

5. (define (square n)
(cond ((= n 0) 0)

    ((even? n) (* (square (quotient n 2)) 4))
    (else (+ (square (- n 1)) (- (+ n n) 1))) ) )
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Time: O(log n); we cut down the input size by half each time it’s even. 
When it’s odd, we make one extra recursive call, but then, once we do 
(- n 1), it’s even again, and we get to cut it in half.

6. (define (gcd x y) <======= This is hard!
(if (= y 0)

x
(gcd y (remainder x y))))

Time: O(log n); we cut down the size of “x” by half in at most two 
recursive calls.  First, note that every time we make a recursive call, 
we put y as the “new” x.  There are two cases:

1. y < x/2; then, obviously, in the next recursive call, the “new” x 
(which will be y) will be less than x/2.

2. x/2 < y < x; then, in two recursive calls, the “new” x (which will 
be (remainder x y)) will be less than x/2.  Think about that 
carefully: if x/2 < y, then (remainder x y) < x/2.

Don’t worry if you don’t get the above; it’s kind of out of this 
course’s scope.  You’ll learn all about it in CS70.
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