CS61A Notes 04 - Lists (v1.0)

Pair Up!
Introducing - the only data structure you'll ever need in 61A - pairs.
A pair is a data structure that contains two things - the "things" can be atomic values or even another pair. For example, you can represent a point as (x . y), and a date as (July . 1). Note the Scheme representation of a pair; the pair is enclosed in parentheses, and separated by a single period.

Note that there's an operator called pair? that tests whether something is a pair or not. For example, (pair? (cons 3 4)) is \#t, while (pair? 10) is \#f.

You've read about "cons", "car", and "cdr":
cons - takes in two parameters and constructs a pair out of them. So (cons 3 4) will return (3 . 4)
car - takes in a pair and returns the first part of the pair. So (car (cons 34)) will return 3.
cdr - takes in a pair and returns the second part of the pair. So (cdr (cons 34 4)) will return 4.

These, believe it or not, will be all we'll ever need to build complex data structures in this course.
QUESTIONS: What do the following evaluate to?

```
(define u (cons 2 3)) (define w (cons 5 6)) (define x (cons u w))
(define y (cons w x)) (define z (cons 3 y))
```

1. u, $w, ~ x, y, z$ (write them out in Scheme's notation)
2. ($\operatorname{car} \mathrm{y})$
3. (car (car y))
4. ($\operatorname{cdr}(\operatorname{car}(\operatorname{cdr}(\operatorname{cdr} z))))$
5. ($+(\operatorname{cdr}(\operatorname{car} y))(\operatorname{cdr}(\operatorname{car}(\operatorname{cdr} z))))$
6. (cons $z \mathrm{u}$)
7. ($\operatorname{cons}(\operatorname{car}(\operatorname{cdr} y))(\operatorname{cons}(\operatorname{car}(\operatorname{car} x))(\operatorname{car}(\operatorname{car}(\operatorname{cdr} z)))))$

Then Came Lists

The super-cool definition of "list": a list is either an empty list, or a pair whose car is an element of the list and whose cdr is another list. Note the recursive definition - a list is a pair that contains a list! So then how does it end? Wouldn't there be an infinite number of list? Not so: an empty list, called "nil" and denoted ' () is a list containing no elements. And so it is, that every list ends with the empty list. To test whether a list is empty, you can use the null? operator on a list.

So, to make a list of elements $2,3,4$, we do this:

```
(define x (cons 2 (cons 3 (cons 4 '() ) ) ))
```

So x will be then represented as:

$$
(2 \cdot(3 .(4 . \quad()) \quad)
$$

Now, that looks a bit ugly, so Scheme, the nice friendly language that it is, sugar-coats the notation a bit so you get:

$$
\left(\begin{array}{lll}
2 & 3 & 4
\end{array}\right)
$$

It's a bit annoying to write so many cons to define x . So Scheme, the mushy-gushy language that it is, provides an operator list that takes in elements and returns them in a list. So we can also define x this way:

```
(define x (list 2 3 4))
```

Note: $(\operatorname{car} x)$ is 2 , $(\operatorname{cdr} x)$ is (34), and $(\operatorname{car}(\operatorname{cdr} x))$ is 3 ! Well, it's a bit tiresome to write (car $(\operatorname{cdr} x))$ to get the second element of x. So Scheme, again the huggable lovable language that it is, provides a nifty short hand: ($\operatorname{cadr} x$). This reads cader, and means "take the car of the cdr of". Similarly, you can use (caddr x) - caderder - to take the car of the cdr of the cdr of x, which is 4. You can mix and match the ' a ' and ' d ' between the ' c ' and ' r ' to get the desired element of the list (up to a certain length).

You can also append two lists together. append takes in any number of lists and outputs a list containing those lists concatenated together. So (append (list 34) (list 5 6)) returns (3 4 5 6).

Don't You Mean sentence?

Oh stop grumbling. A "sentence" is actually a special kind of "list" - more specifically, a "sentence" is a flat list - a list without any sublists - whose elements can only be words or numbers. The operators of sentence - first, butfirst, se, etc. - are also much more forgiving in its domain than their list counterparts. For example, here's a list of equivalences:

```
first <==> car: (first '(1 2 3 4)) = (car '(1 1 2 3 4)) = 1
butfirst <==> cdr: (butfirst '(1 2 3 4 ) ) = (cdr '(11 2 3 4)) = (\begin{array}{lll}{2}&{3}&{4}\end{array})
empty? <==> null?: (empty? '()) = (null? '()) = #t
sentence <==> list: (se 1 2 3 4) = (list 1 2 3 4) = (1 2 3 4)
sentence <==> cons: (se 1 '(2 3 4)) = (cons 1 '(2 3 4)) = (1 2 3 4)
sentence <==> append: (se '(1 2) '(3 4)) = (append '(1 2) '(3 4)) = (1 2 3 4)
count <==> length: (count '(3 4 1)) = (length '(3 4 1)) = 3
every <==> map: (every square '(1 2)) = (map square '(1 2)) = (1 4)
keep <==> filter: (keep number? '(2 k 4)) = (filter number? '(2 k 4)) = (2 4)
```

Note that while se can be used for any combination of single-elements and sentences to make another sentence, list, cons and append are a bit more subtle, and what you pass in as arguments really matters.. For example,

```
(se '(1 2) '(3 4)) = (1 2 3 4) != (list '(1 2) '(3 4 4) )=((1 2) (3 4))
(se '(1 2) 3) = (1 2 3) != (cons '(1 2) 3) = ((\begin{array}{lll}{1}&{2}\end{array}). 3)
    != (list '(1 2) 3) = ((1 2) 3) != (append '(1 2) 3) = Error: 3 not a list!
```

And so on. You must be more careful with what you pass into the list operators! What do you get for all that trouble? Power - you can put anything into lists, not just words and numbers. You will now be able to construct deep lists - lists that contain sublists, which allows you to represent all sorts of cool things. You can also store exotic things like procedures in a list. The possibilities are endless!

QUESTIONS:

1. Define a procedure list-4 that takes in 4 elements and outputs a list equivalent to one created by calling list.
2. Define a procedure length that takes in a list and returns the number of elements within the list.
3. Define a procedure list? that takes in something and returns \#t if it's a list, \#f otherwise.
4. Define append for two lists.
5. Suppose we have x bound to a mysterious element. All we know is this:
(list? x) ==> \#t
(pair? x) ==> \#f
What is x ?
6. Add in procedure calls to get the desired results. The blanks don't need to have anything:

7. Define a procedure (insert-after item mark ls) which inserts item after mark in ls.

(Slightly) Harder Lists

1. Define a procedure (depth 1 s) that calculates how maximum levels of sublists there are in 1 s . For example, (depth '(1) $\left.2 \begin{array}{lll}1 & 3 & 4\end{array}\right)$) $==>1$ (depth '(1 2 (3 4) 5)) ==> 2 (depth '(1 $2(345(67) 8) 9(1011) 12))==>3$
Remember that there's a procedure called max that takes in two numbers and returns the greater of the two.
2. Define a procedure (remove item ls) that takes in a list and returns a new list with item removed from ls.
3. Define a procedure (unique-elements 1 s) that takes in a list and returns a new list without duplicates. You've already done this with remove-dups, and it used to do this:
(remove-dups '($\left.\begin{array}{llllllll}3 & 5 & 6 & 3 & 3 & 5 & 9 & 8\end{array}\right)==\left(\begin{array}{lllll}6 & 3 & 5 & 9 & 8\end{array}\right)$
where the last occurrence of an element is kept. We'd like to keep the first occurrences:

Try doing it without using member?. You might want to use remove above.
4. Define a procedure (count-of item ls) that returns how many times a given item occurs in a given list; it could also be in a sublist. So, (count-of 'a '(abca a (b dac(a e) a) b (a))) ==> 7
5. Define a procedure (interleave ls1 ls2) that takes in two lists and returns one list with elements from both lists interleaved. So,

6. Write a procedure (apply-procs procs args) that takes in a list of single-argument procedures and a list of arguments. It then applies each procedure in procs to each element in args in order. It returns a list of results. For example,
(apply-procs (list square double +1) '(1 2234$)$)
$==>\left(\begin{array}{llll}3 & 9 & 19 & 33\end{array}\right)$

Expression Lists

Here's something interesting: a Scheme expression is really just a list! For example, (+23) is just a list whose first element is the symbol + , second element the number 2, and third element the number 3. Similarly, (define x (* 45)) is just a list whose first element is the symbol "define", second element the symbol " x ", and third element the sublist ($\begin{array}{lll} & 4 & 5\end{array}$). Given that insight, let's start manipulating more lists!

QUESTIONS

1. Define a procedure (eval-plus exp) that takes in a valid Scheme expression consisting only of + and numbers, and evaluates it to the correct value. Assume that + always only gets two arguments. For example,
(eval-plus 3) ==> 3
(eval-plus '(+ 3 4)) ==> 7
(eval-plus '(+ 10 (+ 3 2)) ==> 15
2. (HARD!) Define (eval-plus exp) again, but let + take any number of arguments.
3. We'd like some easy way of creating a lambda expression. Write (make-lambda args body) that takes in the argument list and the body of a procedure, and produces the corresponding lambda expression. For example,
```
(make-lambda '(x y) '(+ x (* y x))) ==> (lambda (x y) (* y x))
```

4. Recall that there are two ways of defining procedures: the "real" way, and the sugar-coated way. Write a procedure (unsugar def) that takes in a procedure definition in sugar-coated syntax, and returns the same definition without using the syntactic sugar. For example,
```
(unsugar '(define (square x) (* x x)))
    ==> (define square (lambda (x) (* x x)))
```

5. Recall that a let expression is actually just a lambda expression. Write a procedure (let->lambda exp) that takes in a let expression and returns the corresponding lambda expression. For example,
(let->lambda '(let ((x 3) (y 10)) (+ x y)))
$==>$ ((lambda (x y) (+ x y)) 3 10)
