
CS61A Notes 04 – Lists [Solutions v1.0]
Pair Up!

QUESTIONS: What do the following evaluate to?

(define u (cons 2 3)) (define w (cons 5 6)) (define x (cons u w))
(define y (cons w x)) (define z (cons 3 y))
1. u, w, x, y, z (write them out in Scheme’s notation)

u: (2 . 3)
w: (5 . 6)
x: ((2 . 3) 5 . 6)
y: ((5 . 6) (2 . 3) 5 . 6)
z: (3 (5 . 6) (2 . 3) 5 . 6)

Note: when you type this into STk, y and z look weird; I’m not sure why
right now, but I’ll look into it. As data structures, they still work
fine.

2. (car y)
(5 . 6)

3. (car (car y))
5

4. (cdr (car (cdr (cdr z))))
3

5. (+ (cdr (car y)) (cdr (car (cdr z))))
12

6. (cons z u)
((3 (5 . 6) (2 . 3) 5 . 6) 2 . 3)

7. (cons (car (cdr y)) (cons (car (car x)) (car (car (cdr z)))))
((2 . 3) 2 . 5)

Then Came Lists

QUESTIONS:

1. Define a procedure list-4 that takes in 4 elements and outputs a list equivalent to one created by
calling list.
(define (list-4 e1 e2 e3 e4)

(cons e1 (cons e2 (cons e3 (cons e4 ‘())))))

2. Define a procedure length that takes in a list and returns the number of elements within the list.
(define (length ls)

(if (null? ls)
 0
 (+ 1 (length (cdr ls)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

1

3. Define a procedure list? that takes in something and returns #t if it’s a list, #f otherwise.
(define (list? ls)

(or (null? ls)
 (and (pair? ls)

(list? (cdr ls)))))

Where’s the base case?!

4. Define append for two lists.
(define (append ls1 ls2)
(if (null? ls1)

 ls2
 (cons (car ls1) (append (cdr ls1) ls2))))

5. Suppose we have x bound to a mysterious element. All we know is this:
(list? x) ==> #t
(pair? x) ==> #f
What is x?
The only thing that’s a list but not a pair is ‘(), the null list.

6. Add in procedure calls to get the desired results. The blanks don’t need to have anything:

(cons ‘a ‘(b c d e))
==> (a b c d e)

(append ‘(cs61a is) (list ‘cool))
==> (cs61a is cool)

(cons ‘(back to) ‘(save the universe))
==> ((back to) save the universe)

(cons ‘(I keep the wolf) (car ‘((from the door))))
==> ((I keep the wolf) from the door)

7. Define a procedure (insert-after item mark ls) which inserts item after mark in ls.
(define (insert-after item mark ls)

(cond ((null? ls) ‘())
((equal? (car ls) mark)
 (cons (car ls) (cons item (cdr ls))))
(else (cons (car ls) (insert-after item mark (cdr ls))))))

(Slightly) Harder Lists

1. Define a procedure (depth ls) that calculates how maximum levels of sublists there are in ls.
For example,
(depth ‘(1 2 3 4)) ==> 1
(depth ‘(1 2 (3 4) 5)) ==> 2
(depth ‘(1 2 (3 4 5 (6 7) 8) 9 (10 11) 12)) ==> 3
Remember that there’s a procedure called max that takes in two numbers and returns the greater of
the two.
(define (depth ls)

(if (atom? ls)
 0
 (max (+ 1 (depth (car ls))) (depth (cdr ls)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

2

You probably need a while to convince yourself this is right. Why add
1 to the depth of car but not to the depth of cdr?

2. Define a procedure (remove item ls) that takes in a list and returns a new list with item
removed from ls.
(define (remove item ls)

(cond ((null? ls) ‘())
((equal? item (car ls)) (remove item (cdr ls)))
(else (cons (car ls) (remove item (cdr ls))))))

3. Define a procedure (unique-elements ls) that takes in a list and returns a new list without
duplicates. You’ve already done this with remove-dups, and it used to do this:
(remove-dups ‘(3 5 6 3 3 5 9 8)) ==> (6 3 5 9 8)
where the last occurrence of an element is kept. We’d like to keep the first occurrences:
(unique-elements ‘(3 5 6 3 3 5 9 8)) ==> (3 5 6 9 8)
Try doing it without using member?. You might want to use remove above.
(define (unique-elements ls)

(if (null? ls)
 ‘()
 (cons (car ls) (unique-elements (remove (car ls) (cdr ls))))))

4. Define a procedure (count-of item ls) that returns how many times a given item occurs in a
given list; it could also be in a sublist. So,
(count-of ‘a ‘(a b c a a (b d a c (a e) a) b (a))) ==> 7
(define (count-of item ls)

(cond ((null? ls) 0)
 ((pair? (car ls))
 (+ (count-of item (car ls))
 (count-of item (cdr ls))))

 ((equal? item (car ls)) (+ 1 (count-of item (cdr ls))))
 (else (count-of item (cdr ls)))))

5. Define a procedure (interleave ls1 ls2) that takes in two lists and returns one list with
elements from both lists interleaved. So,
(interleave ‘(a b c d) (1 2 3 4 5 6 7)) ==> (a 1 b 2 c 3 d 4 5 6 7)
(define (interleave ls1 ls2)

(cond ((null? ls1) ls2)
((null? ls2) ls1)
(else (cons (car ls1) (interleave ls2 (cdr ls1))))))

6. Write a procedure (apply-procs procs args) that takes in a list of single-argument
procedures and a list of arguments. It then applies each procedure in procs to each element in
args in order. It returns a list of results. For example,
(apply-procs (list square double +1) ‘(1 2 3 4))

==> (3 9 19 33)
(define (apply-procs procs args)

(if (null? procs)
 args
 (apply-procs (cdr procs) (map (car procs) args))))

Ahmed Owainati CS61A; courtesy of Chung Wu

3

Expression Lists

QUESTIONS

1. Define a procedure (eval-plus exp) that takes in a valid Scheme expression consisting only of +
and numbers, and evaluates it to the correct value. Assume that + always only gets two arguments.
For example,
(eval-plus 3) ==> 3
(eval-plus ‘(+ 3 4)) ==> 7
(eval-plus ‘(+ 10 (+ 3 2)) ==> 15
(define (eval-plus exp)

(cond ((atom? exp) exp)
(else (+ (eval-plus (cadr exp)) (eval-plus (caddr exp))))))

2. (HARD!) Define (eval-plus exp) again, but let + take any number of arguments.

We’re going to do “mutual recursion”:
(define (eval-plus exp)

(if (atom? exp)
 exp
 (add-expressions (cdr exp))))

(define (add-expressions exps)
(if (null? exps)

 0
 (+ (eval-plus (car exps)) (add-expressions (cdr exps)))))

Note that eval-plus calls add-expressions to add up a list of
expressions, and add-expressions calls eval-plus to find out the value
of each expression it is given!

3. We’d like some easy way of creating a lambda expression. Write (make-lambda args body)
that takes in the argument list and the body of a procedure, and produces the corresponding lambda
expression. For example,
(make-lambda ‘(x y) ‘(+ x (* y x))) ==> (lambda (x y) (* y x))
(define (make-lambda args body)

(list ‘lambda args body))

4. Recall that there are two ways of defining procedures: the “real” way, and the sugar-coated way.
Write a procedure (unsugar def) that takes in a procedure definition in sugar-coated syntax, and
returns the same definition without using the syntactic sugar. For example,
(unsugar ‘(define (square x) (* x x)))

==> (define square (lambda (x) (* x x)))
Let’s define a few helpers to help us:
(define (def-name def) (caadr def))
(define (def-args def) (cdadr def))
(define (def-body def) (caddr def))

(define (unsugar def)

Ahmed Owainati CS61A; courtesy of Chung Wu

4

(list ‘define (def-name def)
(make-lambda (def-args def) (def-body def))))

5. Recall that a let expression is actually just a lambda expression. Write a procedure
(let->lambda exp) that takes in a let expression and returns the corresponding lambda
expression. For example,
(let->lambda ‘(let ((x 3) (y 10)) (+ x y)))

==> ((lambda (x y) (+ x y)) 3 10)
Again, we’ll use some helpers to make our code more readable:

(define (let-vars exp) (map car (cadr exp)))
(define (let-vals exp) (map cadr (cadr exp)))
(define (let-body exp) (caddr exp))

(define (let->lambda exp)
(cons (make-lambda (let-vars exp) (let-body exp)) (let-vals exp)))

Ahmed Owainati CS61A; courtesy of Chung Wu

5

