
CS61A Notes 05 – Fake Plastic Trees [Solutions v1.0]
Fake Plastic Trees

QUESTIONS

1. Write (square-tree tree), which returns the same tree structure, but with every element
squared. Don’t use “map”!
(define (square-tree tree)

(make-tree (square (datum tree))
 (square-forest (children tree))))

(define (square-forest forest)
(if (null? forest)

 ‘()
 (cons (square-tree (car forest)) (square-forest (cdr forest)))))

2. Write (max-of-tree tree) that does the obvious thing. The tree has at least one element.
(define (max-of-tree tree)

(if (null? (children tree))
 (datum tree)
 (max (datum tree) (max-of-forest (children tree)))))

(define (max-of-forest forest)
(if (null? (cdr forest))

 (max-of-tree (car forest))
 (max (max-of-tree (car forest)) (max-of-forest (cdr forest)))))

3. Write (listify-tree tree) that turns the tree into a list in any order. (This one you can’t use
map even if you tried... Muwahahaha)
(define (listify-tree tree)

(cons (datum tree) (listify-forest (children tree))))
(define (listify-forest forest)

(if (null? forest)
 ‘()
 (append

(listify-tree (car forest)) (listify-forest (cdr forest)))))

4. A maximum heap is a tree whose children’s data are all less-than-or-equal-to the root’s datum. Of
course, its children are all maximum heaps as well. Write (valid-max-heap? tree) that checks
if this is true for a given tree.
(define (valid-max-heap? tree)

(and (= (datum tree) (max-of-tree tree))
 (valid-max-heaps? (children tree))))))

(define (valid-max-heaps? forest)
(cond ((null? forest) #t)

(else (and (valid-max-heap? (car forest))
 (valid-max-heaps? (cdr forest))))))

Ahmed Owainati CS61A; courtesy of Chung Wu

1

Binary Search Trees

QUESTIONS

1. Jimmy the Smartass was told to write (valid-bst? bst) that checks whether a tree satisfies the
binary-search-tree property – elements in left subtree are smaller than datum, and elements in right
subtree are larger than datum. He came up with this:

(define (valid-bst? bst)
(cond ((null? bst) #t)

(else
 (and (or (null? (left-branch bst))

 (and (< (datum (left-branch bst)) (datum bst))
 (valid-bst? (left-branch bst))))

(or (null? (right-branch bst))
 (and (> (datum (right-branch bst)) (datumbst))
 (valid-bst? (right-branch bst))))))))

Why will Jimmy never succeed in life? Give an example that would fool his pitiful procedure.

Checking if the bst property is true for your immediate children’s
labels does not guarantee that the property holds for the whole
subtree. For example, this tree would fool valid-bst? :

10
/ \

5 18
/ \
1 30

The 1 violates the bst property (1 is not larger than 10), but Alex’s
algorithm will merely check that 1 is smaller than 18, and move on.

Can you do better?

2. Write (sum-of bst) that takes in a binary search tree, and returns the sum of all the data in the
tree.

(define (sum-of bst)
(cond ((null? bst) 0)

(else (+ (datum bst) (sum-of (left-branch bst))
 (sum-of (right-branch bst))))))

3. Write (max-of bst) that takes in a binary search tree, and returns the maximum datum in the
tree. The tree has at least one element.
(define (max-of bst)

(cond ((null? (right-branch bst)) (datum bst))
(else (max-of (right-branch bst)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

2

4. Write (listify bst) that converts elements of the given bst into a list. The list should be in
NON-DECREASING ORDER!
(define (listify bst)

(cond ((null? bst) ‘())
(else (append (listify (left-branch bst))

 (list (datum bst))
 (listify (right-branch bst))))))

5. Write (remove-leaves bst) that takes in a bst and returns the bst with all the leaves
removed.
(define (remove-leaves bst)
 (cond ((null? bst) ‘())
 ((leaf? bst) ‘())
 (else (make-tree (datum bst)
 (remove-leaves (left-branch bst))
 (remove-leaves (right-branch bst))))))

6. Write (height-of tree) that takes in a tree and returns the height – the length of the longest
path from the root to a leaf.

(define (height-of tree)
 (cond ((leaf? tree) 0)
 (else (+ 1 (max (height-of (left-branch tree))
 (height-of (right-branch tree)))))))

7. (HARD!) Write (width-of tree) that takes in a tree and returns the width – the length of the
longest path from one leaf to another leaf.
(define (width-of tree)
 (cond ((or (null? tree) (leaf? tree)) 0)
 (else (max (+ 2
 (height-of (left-branch tree))
 (height-of (right-branch tree)))
 (width-of (left-branch tree))
 (width-of (right-branch tree))))))

Ahmed Owainati CS61A; courtesy of Chung Wu

3

Deep Lists

“Deep lists” are lists that contain sublists. You’ve already been working with them in the lab with deep-reverse, and
in homeworks with substitute2. You’ll find, however, that sometimes, they’ll have recursive properties rather like
those of general trees. Here’s an example.

QUESTION

Consider the following Scheme representation for a hierarchical file system. A “file-entry” can either be a
file or a directory, and it is represented by a list. The file entry for a file is a list whose first element is the
word FILE, and the second element is the name of the file. The file entry for a directory is a list whose first
two elements are the word DIRECTORY and the name of the directory, and whose remaining elements are file
entries for the files within the directory (which may be directories themselves. For example,

(DIRECTORY proj2
(DIRECTORY test)
(FILE proj2.scm)
(DIRECTORY cheat

(DIRECTORY my-friends-proj2
(FILE proj2-2.scm)
(FILE readme)
(FILE transcript))

(FILE proj2-copy.scm)))

Write a procedure (file-list file-entry) that, given a file entry for a directory, returns a list of
names of the non-directory files anywhere in the corresponding directory tree. For example, given the file
entry above, file-list should return the list

(proj2.scm proj2-2.scm readme transcript proj2-copy.scm),
not necessarily in that order.

(define (file-list file-entry)
(if (eq? (car file-entry) ‘FILE)

 (list (cadr file-entry))
 (file-list-of-files (cddr file-entry))))

(define (file-list-of-files file-entries)
(if (null? file-entries)

 ‘()
 (append (file-list (car file-entries))

 (file-list-of-files (cdr file-entries)))))

Ahmed Owainati CS61A; courtesy of Chung Wu

4

