CS61A Notes 9 - Now The Mutants Attack (v1.1)

That Which Look The Same May Not Be The Same (Thy eyes are devil's idle playthings)
Now is a good time to bring up what you've noticed all along - there are different degrees of "sameness" in Scheme. Or, more specifically, things can be equal?, and things can be eq?. Now you're finally old enough to know the truth.
equal? is used to compare values. We say two things are equal? if they evaluate to the same thing. For example, (equal? ' (2 $\left.3 \mathrm{~S}_{2} 4\right)^{\prime}\left(\begin{array}{lll}2 & 3 & 4\end{array}\right)$) returns \#t, since both are lists containing three elements: 2,3 and 4. This is the comparison method that you're all familiar with.
eq?, however, is used to compare objects. We say two things are eq? if they point to the same object. For those of you proficient in C, you may think that x eq? y if x and y are both pointers holding the same address values.
 are not the same list!

Consider these:

```
(define x (list 1 2 3)) (define y (list 1 2 3)) (define z x)
```

Then (eq? x y) returns \#f but (eq? $z x$) returns \#t. How many lists are created total?

Teenage Mutant Ninja... err, Schemurtle (you try to do better)

Mutation refers to changing a data structure. Since our preferred data structure are pairs, naturally, then, to perform mutation on pairs, we have set-car! and set-cdr!. Note that set-car! and set-cdr! are NOT special forms! That's why you can execute things like (set-car! (cdr lst) (+ 2 5)).

To write procedures that deal with lists by mutation (rather than by constructing entirely new lists like we've done so far), here's a possible approach: first, try to do the problem without using mutation, as you normally would. Then, whenever you see cons used in your procedure, think about how you can modify the procedure to use set car! or set-cdr! instead.

Do not confuse set-car! and set-cdr! with set!. set! is used to change the value of a variable, or, what some symbol in the environment points to. set-car! and set-cdr! are used to change the value inside a cons pair, and thus to change elements and structure of lists, deep-lists, trees, etc. They are not the same!

Also, in working with lists, you'll often find that you use set-car! to change elements of the list, and set-cdr! to alter the structure of the list.. This shouldn't be a surprise - recall that in a list, the elements are the car of each pair, and the subsequent sublists are the cdr. But don't be fool into thinking set-car! is always for element changes and set-cdr! is always for structural changes; in a richer data structure, either can be used for anything.

QUESTIONS

1. Personally, I think set-car! and set-cdr! are pretty useless too; we can just implement them using set!. Check out my two proposals for set-car! Do they work, or do they work? Prove me wrong by drawing box-and-pointer diagrams.
a. (define (set-car! thing val)
(set! (car thing) val))
b. (define (set-car! thing val)
(let ((thing-car (car thing)))
(set! thing-car val)))
2. I'd like to write a procedure that, given a deep list, destructively changes all the atoms into the symbol scheme:
> (define ls "(1 2 (3 (4) 5)))
> (glorify! ls) ==> return value unimportant
> ls ==> (scheme scheme(scheme(scheme) scheme))
Here's my proposal:
(define (glorify! L)
(cond ((atom? L)
(set! L 'scheme))
(else (glorify! (car L))
(glorify! (cdr L)))))
Does this work? Why not? Write a version that works.
3. We'd like to rid ourselves of odd numbers in our list:
(define my-lst '(1 234 5))
Implement (no-odd! ls) that takes in a list of numbers and returns the list without the odds, using mutation: (no-odd! my-lst) ==> '(24)
4. It would also be nice to have a procedure which, given a list and an item, inserts that item at the end of the list by making only one new cons cell. The return value is unimportant, as long as the element is inserted. In other words,
> (define ls '(1 23 4))
$>$ (insert! ls 5) ==> return value unimportant
$>$ ls ==> (1 234 5)

Does this work? If not, can you write one that does?
(define (insert! L val)
(if (null? L)
(set! L (list val))
(insert! (cdr L) val)))
5. Implement (deep-map! proc deep-ls) that maps a proc over every element of a deep list, without allocating any new cons pairs. So,
(deep-map! square ${ }^{\prime}(12(3$ (4 5) (6 (7 8 ())) 9))) ==>
'(14 (9 (16 25) (36 (49 64 ())) 81))

6. Implement (interleave! ls1 ls2) that takes in two lists and interleaves them without allocating new cons pairs.

Just When You Were Getting Used To Lists...

Finally we are now introducing to you what most of you already know - arrays. You've already seen them countless times, so I won't go into them in detail. Roughly, an array is a contiguous block of memory - and this is why you can have "instantaneous", random access into the array, instead of having to traverse down the many pointers of a list. Recall the vector operators:
(vector [element1] [element2] ...) ==> works just like (list [element1] ...)
(make-vector [num]) ==> creates a vector of num elements, all unbound
(make-vector [num] [init-value]) ==> creates a vector of num elements, all set to init-value (vector-ref $v i$) $==>v[i]$; gets the ith element of the vector v
(vector-set! v i val) ==>v[i] = val; sets the ith element of the vector v to val
(vector-length v) ==> returns the length of the vector v
Beyond using different operators, there are a few big differences between vectors and lists:

Vectors of length \mathbf{N}

Lists of length \mathbf{N}

\leftarrow a contiguous block of memory cells
$\leftarrow \quad \mathrm{O}(1)$ for accessing any item in the vector
$\leftarrow \mathrm{O}(\mathrm{N})$ for adding an item to the middle of the vector, since you have to move the rest of the vector down

- $\mathrm{O}(\mathrm{N})$ for growing a vector; note that you have to reallocate another, larger block of memory!
\leftarrow add 1 to index to get to the next element
\leftarrow you may have "unbound" elements in the vector; that is, length of vector is not the same as length of your valid data

Note the last bullet. With lists, you allocate a new piece of memory (using cons) when you need to add an element, but with vector, you allocate all the memory you need first, even if you don't have enough data to fill it up.

Also, just as you can have deep lists, where elements of a list may be a list as well, you can also have "deep" vectors, often referred to as n-dimensional arrays, where n refers to how "deep" the deep vector is. For example, a table would be a 2-dimensional array - a vector of vectors. Note that, unlike in, say, C, your each vector in your 2D table does NOT have to have the same size! Instead, you can have variable-length rows inside the same table. In this sense, the vectors of Scheme are more like the arrays of Java than C.

QUESTIONS

1. Write procedure (sum-of-vector v) that adds up the numbers inside the vector. Assume all data fields are valid numbers.
2. Write procedure (vector-copy! src src-start dst dst-start length). After the call, length elements in vector src starting from index src-start should be copied into vector dst starting from index dst-start.
STk> $a==>$ \# (1 243456789 10)
STk> b ==> \#(a b c d efghig k)
STk> (vector-copy! a 5 b 2 3) ==> okay
STk> a ==> \#(1 23456789 10)
STk> b ==> \#(a b 678 f ghic k)
3. Write procedure (insert-at! vival); after a call, vector v should have val inserted into location i. All elements starting from location i should be shifted down. The last element of v is disgarded.
STk> a ==> \#(cs61a is cool \#[unbound] \#[unbound])
STk> (insert-at! a 2 'very) ==> okay
STk> a ==> \#(cs61a is very cool \#[unbound])
4. Write procedure (vector-double! v). After a call, vector v should be doubled in size, with all the elements in the old vector replicated in the second half. So,
STk> a ==> \#(1 $\left.2 \begin{array}{lll}1 & 3 & 4\end{array}\right)$
STk> (vector-double! a) ==> okay
STk> a ==> \#(1 23412344$)$
5. Write procedure (reverse-vector! v) that reverses the elements of a vector, obviously.
6. Write procedure (square-table! t) that takes in an n-by-m table and squares every element.
