CS61A Notes 11 — Concurrent Vectors In The Sky [Solutions v1.0]
Just When You Were Getting Used To Lists...

QUESTIONS

1.

Write procedure (sum-of-vector v) that adds up the numbers inside the vector.
You can use an accumulator or a helper like this:

(define (sum-of-vector v)
(define (helper index)
(cond ((= index (vector-length wv)) 0)
(else (+ (vector-ref v index) (helper (+ index 1))))))
(helper 0))

Write procedure (vector-copy! src src-start dst dst-start length). After the
call, length elements in vector src starting from index src-start should be copied into vector

dst starting from index dst-start.
STk> a ==> #(1 2 3 456 7 8 9 10)

STk> b ==> #(abcde £fghijk)

STk> (vector-copy! a b 5 2 3) ==> okay

STk> a ==> #(1 2 3 4 5 c de 9 10)

STk> b ==> #(abcde £fghiijk)

(define (vector-copy! src src-start dst dst-start length)

(1f (> length 0)
(begin (vector-set! dst dst-start (vector-ref src src-start))
(vector-copy! src (+ src-start 1) dst
(+ dst-start 1) (- length 1)))))

Write procedure (insert-at! v i wval); after a call, vector v should have val inserted into
location i. All elements starting from location i should be shifted down. The last element of v is

disgarded.
STk> a ==> #(cs6la is cool #[unbound] #[unbound])
STk> (insert-at! a 2 ‘very) ==> okay

STk> a ==> #(cs6la is very cool #[unbound])
(define (insert-at! v i wval)
(let* ((amt-to-shift (- (vector-length v) i 1))
(temp-v (make-vector amt-to-shift)))
(vector-copy! v i temp-v 0 amt-to-shift)
(vector-copy! temp-v 0 v (+ i 1) amt-to-shift)
(vector-set! v 1 val)))

NOTE: why didn’t we just do (vector-copy! v i v (+ i 1) amt-to-shift)?

Write procedure (vector-double! v). After a call, vector v should be doubled in size, with all
the elements in the old vector replicated in the second half. So,

STk> a ==> #(1 2 3 4)

STk> (vector-double! a) ==> okay

STk> a ==> #(1 2 3 41 2 3 4)

IMPOSSIBLE! Hope you weren’t fooled by this. To double the size of a

vector, you’d have to allocate a new vector. However, recall that you
cannot change what “a” points to from within a procedure! You can at

most return a new vector double in size.

Ahmed Owainati CS61A; courtesy of Chung Wu



5. Write procedure (reverse-vector! v) that reverses the elements of a vector, obviously.
;; for elements from start to stop, do body
(define (from-to-do start stop body)
(if (> start stop) 'done

(begin (body start) (from-to-do (+ 1 start) stop body)) ))

(define (reverse-vector! v)
(from-to-do 0 (- (quotient (vector-length v) 2) 1)

(lambda (1)
(let ((temp (vector-ref v 1i)))
(vector-set! v i (vector-ref v (- (vector-length v) i 1)))
(vector-set! v (- (vector-length v) i 1) temp)))))

6. Write procedure (square-table! t) that takes in an n-by-m table and squares every element.
(define (square-table! t)

(let ((n (vector-length t))
(m (vector-length (vector-ref t 0))))
(from-to-do 0 (- n 1)
(lambda (i)
(from-to-do O (- m 1)
(lambda (7)
(vector-set!
(vector-ref! t 1)
]
(square (vector-ref! (vector-ref! t i) 3)))))))))

A Concurrent March Through Programming Hell

QUESTION: What are the possible values of x after the below?

(define x 5)
(parallel-execute (lambda() (set! x (* x 2)))
(lambda () (if (even? x) (set! x (+ x 1))

(set! x (+ x 100)))))
11, 210, 10, 105, 110

Concurrency: The Series

1. Here is an attempt to simulate this behavior:

(define (eat-talk i)
(define (loop)

(cond ((can-eat? i)
(take-chopsticks i)
(eat-a-while)
(release-chopsticks 1i))

(else (spew-nonsense)))

(loop)

(loop))
(parallel-execute (lambda() (eat-talk 0))

(lambda () (eat-talk 1))
(lambda () (eat-talk 2)))

Ahmed Owainati CS61A; courtesy of Chung Wu



;; a list of chopstick status, #t if usable, #f if taken
(define chopsticks ‘' (#t #t #t))

;; does person i have both chopsticks?
(define (can-eat? i)
(and (list-ref chopsticks (right-chopstick 1i))
(list-ref chopsticks (left-chopstick i))))

;; let person i take both chopsticks
;; assume (list-set! 1ls i val) destructively sets the ith element of
;7 1s to val
(define (take-chopsticks i)
(list-set! chopsticks (right-chopstick i) #f£)
(list-set! chopsticks (left-chopstick i) #f£f))

;; let person i release both chopsticks

(define (release-chopsticks i)
(list-set! chopsticks (right-chopstick i) #t)
(list-set! chopsticks (left-chopstick i) #t))

;; some helper procedures
(define (left-chopstick i) (if (=1 2) 0 (+ i 1)))
(define (right-chopstick i) i)

Is this correct? What kind of hazard does this create?

Incorrect; more than one person could be eating at once (all three
check they can eat, all three take chopsticks, and all three eat)

Here’s a proposed fix:

(define protector (make-serializer))

(parallel-execute (protector (lambda() (eat-talk 0)))
(protector (lambda() (eat-talk 1)))
(protector (lambda() (eat-talk 2)))

Does this work?

Unfair. Note that eat-talk generates in infinite loop. The serializer
makes sure only one of the three is executed at once, so once parallel-
execute picks one to execute, it’s going to keep eating and eating, and
the others won’t even get to execute at all.

Here’s another proposed fix: use one mutex per chopstick, and acquire both before doing anything:
(define protectors
(list (make-mutex) (make-mutex) (make-mutex)))

(define (eat-talk i)
(define (loop)

((list-ref protectors (right-chopstick i)) ‘acquire)
((list-ref protectors (left-chopstick i)) ‘acquire)
(cond ... ;; as before)

((list-ref protectors (right-chopstick i)) ‘release)
((list-ref protectors (left-chopstick i)) ‘release)
(1oop))

Ahmed Owainati CS61A; courtesy of Chung Wu



(loop))
Does that work?

Deadlock. Suppose all three grab the chopstick on the left at the same
time; then all three will be waiting for the chopstick on the right,
resulting in deadlock.

What about this:
(define m (make-mutex))
(define (eat-talk 1i)
(define (loop)
(m ‘acquire)

(cond ... ;; as before)
(m ‘release)
(loop))
(loop))
Inefficient (and not very correct). Only one will eat at the same

time, and all other politicians will just be waiting to acquire the
mutex (rather than spewing nonsense)

So what would be a good solution?
(define m (make-mutex))
(define (eat-talk 1i)
(define (loop)
(m ‘acquire)
(cond ((can-eat? i)
(take-chopsticks i)
(m ‘release)
(eat-a-while)
(m ‘acquire)
(release-chopsticks i)
(m ‘release))
(else (m ‘release) (spew-nonsense)))

(loop)
(1oop))
Note what we’re using the mutex to protect - the chopsticks list
structure! Every time we want to look at it or change it, we must be
holding the mutex. It’s correct because no two processes will be
modifying the list at the same time. It’s efficient because when we do
things that take a long time - like eating or spewing nonsense - we'’re

not holding the mutex.

Ahmed Owainati CS61A; courtesy of Chung Wu



