
CS61A Notes 11 – My Body’s Floating Down The Muddy Stream (v1.0)
Streaming Along

A stream is an element and a “promise” to evaluate the rest of the stream. You’ve already seen multiple
examples of this and its syntax in lecture and in the books, so I will not dwell on that. Suffice it to say, streams is
one of the most mysterious topics in CS61A, but it’s also one of the coolest; mysterious, because defining a stream
often seems like black magic (and requires MUCH more trust than whatever trust you worked up for recursion);
cool, because things like infinite streams allows you to store an INFINITE amount of data in a FINITE amount of
space/time!

How is that possible? We’re not going to be too concerned with the below-the-line implementations of streams,
but it’s good to have an intuition. Recall that the body of a lambda is NOT executed until it is called. For
example, typing into STk:

(define death (lambda() (/ 5 0)))

Scheme says ‘okay’, happily binding death to the lambda. But if you try to run it:

(death) ==> Scheme blows up

The crucial thing to notice is that, when you type the define statement, Scheme did NOT try to evaluate (/ 5
0) – otherwise, it would’ve died right on the spot. Instead, the evaluation of (/ 5 0) is delayed until the actual
procedure call. Similarly, if we want to represent an infinite amount of information, we don’t have to calculate all of
it at once; instead, we can simply calculate ONE piece of information (the stream-car), and leave instructions on
how to calculate the NEXT piece of information (the “promise” to evaluate the rest).

It’s important to note, however, that Scheme doesn’t quite use plain lambda for streams. Instead, Scheme
memorizes results of evaluating streams to maximize efficiency. This introduces some complications that we’ll
visit later. The delay and force operators, therefore, are special operators with side effects.

QUESTIONS

1. Define a procedure (ones) that, when run with no arguments, returns a cons pair whose car is 1,
and whose cdr is a procedure that, when run, does the same thing.

2. Define a procedure (integers-starting n) that takes in a number n and, when run, returns a
cons pair whose car is n, and whose cdr is a procedure that, when run with no arguments, does
the same thing for n+1.

Using Stream Operators

Here are some that we’ll be using quite a bit:
(stream-map proc s ...) – works just like list map; can take in any number of streams.
(stream-filter proc s) – works just like list filter
(stream-append s1 s2) – appends two finite streams together (why not infinite streams?)
(interleave s1 s2) – interleave two streams into one, with alternating elements from s1 and s2.

Ahmed Owainati CS61A, courtesy of Chung Wu

1

Constructing Streams

This is the trickiest part of streams. I said that the topic of streams is a black art, and here’s why. The construction
of streams is counter-intuitive with a heavy dose of that-can’t-possibly-work. So here are some rough guidelines.

1. cons-stream is a special form! cons-stream will NOT evaluate its second argument (the
stream-cdr); obviously, this is desirable, since we’d like to delay that evaluation.

2. Learn how to think about stream-map. Consider this definition of integers, given the stream
ones, a stream of ones, defined in SICP:

(define integers (cons-stream 1 (stream-map + ones integers)))

If the above definition of integers puzzles you a bit, here’s how to think about it.

1 <== your stream-car
1 2 3 4 5 6 ... <== integers

+ 1 1 1 1 1 1 ... <== ones
============================

1 2 3 4 5 6 7 ... <== integers

If you’re ever confounded by an stream-map expression, write it out and all should be clear. For
example, let’s try a harder one – partial-sum, whose ith element is the sum of the first i integers. It is
defined thus:

(define partial-sum (cons-stream 0 (stream-map + partial-sum integers)))

0 <== your stream-car
0 1 3 6 10 15 ... <== partial-sum

+ 1 2 3 4 5 6 ... <== integers
============================

0 1 3 6 10 15 21 ... <== partial-sum

Now, if you find it odd to have integers or partial-sum as one of the things you’re adding up, refer
to guideline #3.

3. Trust the, err, stream. From the first day, we’ve been chanting “trust the recursion”. Well, now that
you’re (slightly more) comfortable with that idea, we need you to do something harder. When you’re
defining a stream, you have to think as if that stream is already defined. It’s often very difficult to trace
through how a stream is evaluated as you stream-cdr down it, so you have to work at the logical level.
Therefore, the above definition of integers works. However, be careful that you don’t trust the stream
too much. For example, this won’t work (see guideline #4):

(define integers integers)

4. Specify the first element(s). Recall that a stream is one element and a promise to evaluate more. Well,
often, you have to specify that one element so that there’s a starting point. Therefore, unsurprisingly, when
you define streams, it often looks like

(cons-stream [first element] [a stream of black magic]).

But there are many traps in this. In general, what you’re avoiding is an infinite loop when you try to look
at some element of a stream. stream-cdr is usually the dangerous one here, as it may force evaluations
that you want to delay. Note that Scheme stops evaluating a stream once it finds one element. So

Ahmed Owainati CS61A, courtesy of Chung Wu

2

simply make sure that it’ll always find one element immediately. For example, consider this definition of
fibs that produces a stream of Fibonacci numbers:

(define fibs (cons-stream 0 (stream-map + fibs (stream-cdr fibs))))

Its intentions are admirable enough; to construct the next fib number, we add the current one to the
previous one. But let’s take a look at how it logically stacks up:

0 <== your stream-car
0 1 1 2 3 5 ... <== fibs

+ 1 1 2 3 5 8 ... <== (stream-cdr fibs)
============================

0 1 2 3 5 8 13 ... <== not quite fibs...

Close, but no cigar (and if you think about it, by the definition of Fibonacci numbers, you really can’t just
start with a single number). Actually, it’s even worse than that; if you type in the above definition of
fibs, and call (stream-cdr fibs), you’ll send STk into a most unfortunate infinite loop. Why?
Well, stream-cdr forces the evaluation of (stream-map + fibs (stream-cdr fibs)).
stream-map is not a special form, so it’s going to evaluate both its arguments, fibs and (stream-
cdr fibs). What’s fibs? Well, fibs is a stream starting with 0, so that’s fine. What’s (stream-
cdr fibs)? Well, stream-cdr forces the evaluation of (stream-map + fibs (stream-cdr
fibs)). stream-map is not a special form, so it’s going to evaluate both its arguments, fibs and
(stream-cdr fibs). What’s fibs? Well, fibs is a stream starting with 0, so that’s fine. What’s
(stream-cdr fibs)? Etc. You get the point.

How do we stop that horrid infinite loop? Well, it was asking for (stream-cdr fibs) that was giving
us trouble – whenever we try to evaluate (stream-cdr fibs), it goes into an infinite loop. Thus, why
don’t we just specify the stream-cdr?

(define fibs
(cons-stream 0

(cons-stream 1 (add-streams fibs (stream-cdr fibs)))))

So, then, let’s try it again. What’s (stream-cdr fibs)? Well, (stream-cdr fibs) is a stream
starting with 1. There! Done! See? Now, it’s pretty magical that adding one more element fixes the
stream-cdr problem for the whole stream. Convince yourself of this. As a general rule of thumb, if in
the body of your definition you use the stream-cdr of what you’re defining, you probably need to
specify two elements. Let’s check that it logically works out as well:

0 1 <== your stream-car
0 1 1 2 3 ... <== fibs

+ 1 1 2 3 5 ... <== (stream-cdr fibs)
============================

0 1 1 2 3 5 8 ... <== Hooray!

So then, let’s try understanding a few of these:
QUESTIONS

Describe what the following expressions define:

1. (define s1 (add-stream (stream-map (lambda(x) (* x 2)) s1) s1))

Ahmed Owainati CS61A, courtesy of Chung Wu

3

2. (define s2
(cons-stream 1

(add-stream (stream-map (lambda(x) (* x 2)) s2) s2)))

3. (define s3
(cons-stream 1

(stream-filter (lambda(x) (not (= x 1))) s3)))

4. (define s4
(cons-stream 1

(cons-stream 2
(stream-filter (lambda(x) (not (= x 1))) s4))))

5. (define s5
(cons-stream 1

(add-streams s5 integers)))

6. Define facts without defining any procedures; the stream should be a stream of 1!, 2!, 3!, 4!, etc.
More specifically, it returns a stream with elements (1 2 6 24 …)
(define facts

(cons-stream

Constructing Streams Through Procedures

You’ll find this the most natural way to construct streams, since it mirrors recursion so much. For example, to use a
trite example,

(define (integers-starting n) (cons-stream n (integers-starting (+ n 1))))

So (integers-starting 1) is a stream whose first element is 1, with a promise to evaluate (integers-
starting 2). The rules are similar to above; you still specify a first element, etc. Pretty simple? Let’s try a
few.

QUESTIONS

1. Define a procedure, (list->stream ls) that takes in a list and converts it into a stream.
(define (list->stream ls)

Ahmed Owainati CS61A, courtesy of Chung Wu

4

2. Define a procedure (lists-starting n) that takes in n and returns a stream containing (n),
(n n+1), (n n+1 n+2), etc. For example, (lists-starting 1) returns a stream
containing (1) (1 2) (1 2 3) (1 2 3 4)…
(define (lists-starting n)

Stream-Processing

Sometimes you’ll be asked to write procedures that convert one given stream into another exerting a certain
property. Some examples:

1. Define a procedure, (stream-censor s replacements) that takes in a stream s and a table
replacements and returns a stream with all instances of all the car of entries in replacements
replaced with the cadr of the entries.
(stream-censor (hello you weirdo ...) ((you I-am) (weirdo an-idiot)))

==> (hello I-am an-idiot ...)
HINT: Use the assoc function!
(define (stream-censor s replacements)

2. Define a procedure (make-alternating s) that takes in a stream of positive numbers and
alternate their signs. So (make-alternating ones) ==> (1 -1 1 -1…) and (make-
alternating integers) ==> (1 -2 3 -4…). Assume s is an infinite stream.
(define (make-alternating s)

Ahmed Owainati CS61A, courtesy of Chung Wu

5

MORE QUESTIONS

1. Given streams ones, twos, threes and fours, write down the first ten elements of:
(interleave ones (interleave twos (interleave threes fours)))

2. Construct a stream all-integers that includes 0 and both the negative and positive integers.
(define all-integers

3. Suppose we were foolish enough to try to implement stream-accumulate:
(define (stream-accumulate combiner null-value s)

(cond ((stream-null? s) null-value)
(else (combiner

(stream-car s)
(stream-accumulate

combiner null-value (stream-cdr s))))))
What happens when we do:

a. (define foo (stream-accumulate + 0 integers))

b. (define bar (cons-stream 1 (stream-accumulate + 0 integers)))

c. (define baz (stream-accumulate
(lambda(x y) (cons-stream x y))
the-empty-stream integers))

Ahmed Owainati CS61A, courtesy of Chung Wu

6

