CS61A Di scussi on Wek 13 (mapr educe, anal yzi ng eval uator)
TA: Evan
OH Monday 10: 30-12p, 1-2p @H50 LAB

* (Know how to use ACCUMULATE/ STREAM ACCUMULATE)
* MAPREDUCE

(mapr educe <mapper> <reducer> <null -val ue> <i nput > <?7?7>)
wher e

<mapper> is a procedure of one argunent with the foll ow ng
domai n/ r ange:

key-val ue pair --> [<mapper>] --> LIST of key-value pairs
<reducer> is a procedure of tw argunents, |ike the conbiner of
accunul at e:

curr-VALUE --> [<reducer>]

accumso-far --> |] --> next-accumso-far

Note the reducer deals with the VALUES of the key-val ue pairs
returned by the mapper.

<null -value> is the null-value used in accunul ate

<input> is either:
a special string telling mapreduce to use a given input:

| nput Directory Format of i nput
"/ beat | es-songs" (Beatles album . song title)
"/ gut enber g/ shakespeare" (Shakespeare play . line fromplay)
"/ gut enber g/ di ckens” (Dickens story . line fromstory)
"/ sanpl e-enni | s" (sanple-email . (fromto subject nsQ))

OR it may be a result of a previous nmapreduce!

<??>is an optional flag, where if your provided reducer is
“comut ati ve/ associ ative” (i.e. output of reducer can be fed

into BOTH i nputs of the reducer and still give correct
results), it will use an extra optim zation step after the MAP
phase.

Al so, we use the follow ng data abstraction for kv-pairs:

make-kv-pair : cons BUT, use data abstraction to help
you
kv- key . car di sti ngui sh MAPREDUCE kv-pairs from

kv-val ue . cdr other pairs (i.e. pairs in values)

Phase 1. Map

Take every key-value pair in the input. Apply mapper on
it. Result is collection of key-value pairs produced by the
mapper .
(The data is split up and nultiple processes are applying the
mapper at the same tine)

Phase 2. Sort into Buckets:

For each key, make a bucket, and dunp the values into it.
Al so, sort the keys in sone order. (The sane processes above
are now throwing the results into the appropriate bucket)

Phase 3. (Group) Reduce:

For each bucket, use the reducer repeatedly to conbi ne al
the VALUES into a single value. Attach the result to the key
agai n. (1 MPORTANT! Each bucket is handl ed by one task)

The end result is a stream of pairs output by Phase 3 (one pair
per bucket)

EXAVPLE

(mapreduce (Il anbda (al bum song-pair)
_ (list (make-kv-pair 'song (kv-value al bum song-
pair))))

(lambda (x y) (+y 1))
0
"/ beat | es-songs")

* Note the call to LIST, don't ever forget that the mapper nust
return a LI ST of key-value pairs

MAP STAGE:
| nput: (<al bunm> . <song-title>)
Qutput: ((song . <song-title>))

SORT STAGE:
For each (song . <song-title>) seen above, put <song-title>
into the song bucket.

Looks like (song . (<title> <title> ... <title>))
REDUCE STAGE:

G ven the bucket (song . (<title> <title> ... <title>))
Reduce (<title> <title> ... <title>) using

(lanmbda (x y) (+y 1)) and base case O.
Qutput: (song . <# of songs>)

Draw the picture for above.

Here are a few problens to consider. Ask yourself the

fol |l ow ng:

1. What VALUES does the task deal with? That is, what should go
in the VALUE of kv-pairs generated by the nmapper.

2. How many GROUPS do | want? The KEY of kv-pairs generated by
t he mapper determ nes which group it will go to.

3. How do | conbine the VALUES in each GROUP?

* What is the longest |ine of Shakespeare?

* Which play contains the line “To be or not to be”? Can we
al so

figure out which |line nunber it appears on?

* Whi ch character has the nost spoken lines in all of
Shakespear e?
(Note lines starting wwth “CHARACTER ")

* How many emails contain “ipod” in the nmessage? O these, who
sends
t he nost of those?

ANALYZ| NG EVALUATOR

The intuition is quite easy. Just renenber, we "conpile"
expressions into procedures that take in an environnment. This
is mainly for speeding up procedure calls (and note, NOT for
just recursive procedures).

For instance, in nct-eval, let's suppose | use the square
procedure a | ot.

Here is a sanple call to square:
(define (square x) (* x X))
(square 7)

[1] not self-evaluating, not a synbol
application: eval square, eval 7
apply square to operands: (7)

[2] Not primtive... It's a conpound procedure:
extend environnment, evaluate (* X X)

[3] eval (* x x): not self-evaluating, not a synbol
application: eval *, |ookup x, |ookup x,

apply *

Now, every tinme we call square, we have to go through nt-eval's
cond cl ause, checking for what type of expression the body of
square is (in step [3]).

What if we could anal yze the square procedure once, so that we
KNOW what type of expression the body of square is? Save
oursel ves sone trouble! Well, that's what anal yzi ng eval uat or
does.

So, what we'd like to see, is that when calling square, in step
[3], we "know' it's an application, so we junp straight into
action:

[new step 1] | ookup *, lookup x, |ookup x, apply *.

How do we do this? First we analyze the expression. After
anal ysis, then we package the information into a procedure:

(lanbda (env) (apply (Il ookup * env)
(list (lookup x env) (lookup x env))))

Then, every tinme we call square, we just call the above
procedure with the appropriate environnent. (i.e. for (square
8), give it an environnment where x is 8).

| n anal yzi ng-eval, the conpil ed expression won't | ook exactly
i ke this, because we have to handl e general cases.

So here's the nodel:
(define (anal yzing-eval exp env) ((analyze exp) env))

Anal yze the expression, then when it's tinme for eval uation,
plug in the environnment.

Anal yze-| anbda:
(I anbda <par anr> <body>)
<body> =anal yze=> <anal yzed-body>

(I anbda (env)
(rmake- procedur e <paran> <anal yzed- body> env))

Here is where nost of the benefits of analysis will come. The
difference is that we anal yze the body BEFORE we nake the
procedure, so when it cones to calling this procedure, all we
have to do is take the anal yzed-body and pass in the
appropriate environnent (as we nentioned earlier about square)

Anal yze-application: (for |anbda-created procedures)
(<proc> <oper ands>)

<proc> =anal yze=> <anal yzed- proc>

<oper ands> =anal yze=> <anal yzed- oper ands>

(1 anbda (env)
(let ((proc (<analyzed-proc> env))
(operands (map (lanbda (a) (a env)) <anal yzed-operands>)))
((procedur e-body proc)
(ext end- environnent (procedure-paraneters proc)
oper ands
(procedure-envi ronnent proc))))

From t he above, you can deduce the follow ng rule:

In a given transcript, you wll see speedup if
sone non-primtive procedure is called nore than once!

Question about anal yzing eval:

1. Which of the follow ng woul d have speedup in anal yzi ng
eval ?

a. (+1 2
b. (((lanmbda (x) (lanmbda (y) (+ x y))) 5) 6)
c. (map (lanbda (x) (* x x)) '"(1 23 4567 89 10))

. (define fib

(I anmbda (n)
(if (or (=n0) (=n1l1) 1
_ (+ (fib (- n 1)) (fib (- n 2)))))
(fib 5)

. (define fact

(lambda (x) (if (= x 0) 1 (* x (fact (- x 1))))))

. (accunmul ate cons nil '"(1 23456 7 89 10))

