CS61A Discussion Week 13 (mapreduce, analyzing evaluator)
TA: Evan
OH: Monday 10:30-12p, 1-2p @ H50 LAB

* (Know how to use ACCUMULATE/STREAM-ACCUMULATE)
* MAPREDUCE

(mapreduce <mapper> <reducer> <null-value> <input> <??>) where

<mapper> is a procedure of one argument with the following
domain/range:

key-value pair --> [<mapper>] --> LIST of key-value pairs

<reducer> is a procedure of two arguments, like the combiner of
accumulate:

curr-VALUE —--> [<reducer>]
accum-so-far --> |] --> next-accum-so-far

Note the reducer deals with the VALUES of the key-value pairs
returned by the mapper.

<null-value> is the null-value used in accumulate

<input> is either:
a special string telling mapreduce to use a given input:

Input Directory Format of input
"/beatles-songs" (Beatles album . song title)
"/gutenberg/shakespeare" (Shakespeare play . line from play)
"/gutenberg/dickens" (Dickens story . line from story)
"/sample-emails" (sample-email . (from to subject msg))

OR it may be a result of a previous mapreduce!

<??> is an optional flag, where if your provided reducer is
“commutative/associative” (i.e. output of reducer can be fed into
BOTH inputs of the reducer and still give correct results), it will
use an extra optimization step after the MAP phase.

Also, we use the following data abstraction for kv-pairs:
make-kv-pair : cons BUT, use data abstraction to help you

kv-key : car distinguish MAPREDUCE kv-pairs from
kv-value : cdr other pairs (i.e. pairs in values)

Phase 1. Map:

Take every key-value pair in the input. Apply mapper on it.
Result is collection of key-value pairs produced by the mapper.
(The data is split up and multiple processes are applying the mapper
at the same time)

Phase 2. Sort into Buckets:

For each key, make a bucket, and dump the values into it. Also,
sort the keys in some order. (The same processes above are now
throwing the results into the appropriate bucket)

Phase 3. (Group) Reduce:

For each bucket, use the reducer repeatedly to combine all the
VALUES into a single value. Attach the result to the key again.
(IMPORTANT! Each bucket is handled by one task)

The end result is a stream of pairs output by Phase 3 (one pair per
bucket)

EXAMPLE

(mapreduce (lambda (album-song-pair)
(list (make-kv-pair 'song (kv-value album-song-pair))))
(lambda (x y) (+ vy 1))
0
"/beatles-songs")

* Note the call to LIST, don't ever forget that the mapper must return
a LIST of key-value pairs

MAP STAGE:
Input: (<album> . <song-title>)
Output: ((song . <song-title>))
SORT STAGE:

For each (song . <song-title>) seen above, put <song-title> into the
song bucket.
Looks like (song . (<title> <title> ... <title>))

REDUCE STAGE:
Given the bucket (song . (<title> <title> ... <title>))
Reduce (<title> <title> ... <title>) using
(lambda (x y) (+ y 1)) and base case 0.
Output: (song . <# of songs>)

Here are a few problems to consider. Ask yourself the following:

1. What VALUES does the task deal with? That is what should go in the
VALUE of kv-pairs generated by the mapper.

2. How many GROUPS do I want? The KEY of kv-pairs generated by the
mapper determines which group it will go to.

3. How do I combine the VALUES in each GROUP?

* What is the longest line of Shakespeare?

We want the longest LINE, so the VALUES should be LINES. As for
GROUPS, we can group them by which PLAY it came from. So the KEYS
should be PLAYS (the key of the input pair).

Note that our mapper can simply leave the input pairs as they are. So
if we use the procedure LIST as our mapper, it will do just that.
Take each input pair, and output the same pair, packaged in a list
(because a mapper must output a list of pairs)

Then, the lines will be grouped by play, and we need to figure out
how to use a reducer to find the longest line. Note that given two
lines, we can look at their lengths and return the line with the
longer length:

(define (longest-line-reducer line-one line-two)
(if (> (length line-one) (length line-two))
line-one line-two))

And the base-case can be the empty line ().

(define plays-and-longest-lines
(mapreduce list longest-line-reducer '() *“/gutenberg/shakespeare”))

This returns a stream of pairs (play . longest-line-in-play)

To get the overall longest line, we'll have to do some post-
processing. We can just use stream-accumulate. But note, first we
have to strip off the keys if we want to use the same reducer:

(stream-accumulate longest-line-reducer '()
(stream-map kv-value plays-and-longest-lines))

* Which play contains the line “To be or not to be”? Can we also
figure out which line number it appears on?

Okay, this is a little silly. We want to use the mapper as a filter.
Any line that is not “To be or not to be”, we should filter out by
returning the empty list. In the end, there will only be one key-
value pair, where the key is the desired answer.

(mapreduce (lambda (kvp) (if (equal? (kv-value kvp)
'(to be or not to be))
kvp
"()))

cons nil “/gutenberg/shakespeare”)

Theoretically, this would work... except that “To be or not to be” is
not the entire line, and there is punctuation in the data that will
throw us off. (You don't have to know this for any test, but we
provide two procedures, match? from lab that matches a pattern, and
strip-punctuation, which removes punctuation from words)

So to remove all punctuation in a line, we simply do
(map strip-punctuation line)

And to see if a line contains (to be or not to be), we do
(match? '(* to be or not to be *) line)

(mapreduce (lambda (kvp)
(let ((L (map strip-punctuation (kv-value kvp))))
(if (match? '(* to be or not to be *) L)
(list (make-kv-pair (kv-key kvp)
L))
"())))
cons
nil
“/gutenberg/shakespeare”)

The end result is
(hamlet (ham to be or not to be that is the question)))

The original line with punctuation:
(n ham. n n to n n be ’ n n Or n n not n n to n n be_ n n that n n is n n the n
"question:")

Is it possible to figure out which line number? There is no way to do
this unless the lines are numbered in the input. The reason why is
that as the lines are being thrown into the buckets, it's impossible
to guarantee any particular ordering (as mappers may finish at
different times and dump their outputs in at any time)

* Which character has the most spoken lines in all of Shakespeare?
(Note lines starting with “CHARACTER:”)

Okay, so I lied, the lines really start with “CHARACTER.” (and it's
abbreviated too!) The other unfortunate thing is that some of the
longer lines are too big and were separated, leaving the last word in
the sentence (along with the period) to be at the front of the line.
But those are infrequent, and we can toss those pairs out at the end.

So the trick here is to filter out anything where the car of the
first line does not end in a period (also should check null? in the
case where you get empty lines)

We output pairs of just (CHARACTER . 1) and count them up!

(mapreduce (lambda (kvp)
(let ((L (kv-value kvp)))
(if (and (not (null? L)) (equal? (last (car L)) "."))

(list (make-kv-pair (bl (car L)) 1))
"())))

+

0

"/gutenberg/shakespeare")

This outputs a stream of pairs of (CHARACTER . LINE-COUNT). So we do
the usual and stream-accumulate for the max value.

(stream-accumulate (lambda (curr-pair max-pair)
(if (> (kv-value curr-pair)
(kv-value max-pair))
curr-pair max-pair))
(make-kv-pair 'foo 0)
(glmo)) ;; get the last thing we did

Result is (king . 466)

How can I sort the stream to automatically have the top few at the
front of the stream? Well, feed it back into mapreduce, and use its
sorting process. Note that it sorts by key, so we'll have to do
something tricky. We make the KEY the COUNT, but INVERTED. So if we
have counts 10 and 20 (10 < 20), and invert them, now we have

-20 < -10.

(mapreduce (lambda (kvp)

(list (make-kv-pair (- (kv-value kvp)) kvp)))
cons nil (glmo)) ;; cons to string together ties
(-466 (king . 466)) (-358 (ham . 358)) (-347 (gloucester . 347))
(-333 (duke . 333)) (-324 (falstaff . 324)) (-277 (clown . 277))
(=274 (othello . 274)) (-272 (iago . 272)) (-257 (prince . 257))

(-211 (timon . 211)) ...

recall: input for sample emails looks like
(sample-email . (<from> <to> <subj> <msg>))

* How many emails contain “ipod” in the message? Of these, who sends
the most of those?

Ok.. so “ipod” is not contained in any of the emails. Let's search
for “proj4” instead!

Again, we use the MATCH? procedure to help us out. We just match the
pattern (* ipod *) to the <message>, which would be the

(cadddr (kv-value <pair>)). If it matches, then we should make a pair
with the sender as key and the value 1.

For good measure, we should also strip punctuation.

(mapreduce (lambda (kvp)
(if (match? '(* proj4 *)
(map strip-punctuation
(cadddr (kv-value kvp))))
(list (make-kv-pair (car (kv-value kvp)) 1))
"()))

+ 0 “/sample-emails”)

Output:

((cs6la-aa) . 26) ((cs6la-ab) . 27) ((csbla-ac) . 27) ((cs6la-ad) .
31) ((cs6la-ae) . 27) ((cs6la-af) . 32) ((csbla-ag) . 26) ((cs6la-ah)
. 24) ((cs6la-ai) . 21) ((csb6la-aj) . 21)

ANALYZING EVALUATOR

The intuition is quite easy. Just remember, we "compile" expressions
into procedures that take in an environment. This is mainly for
speeding up procedure calls (and note, NOT for just recursive
procedures).

For instance, in mc-eval, let's suppose I use the square procedure a
lot.

Here is a sample call to square:
(define (square x) (* X X))
(square 7)

[l1] not self-evaluating, not a symbol
application: eval square, eval 7
apply square to operands: (7)

[2] Not primitive... It's a compound procedure:
extend environment, evaluate (* x X)

[3] eval (* x x): not self-evaluating, not a symbol
application: eval *, lookup x, lookup x,
apply *

Now, every time we call square, we have to go through mc-eval's cond
clause, checking for what type of expression the body of square is
(in step [3]).

What if we could analyze the square procedure once, so that we KNOW
what type of expression the body of square is? Save ourselves some
trouble! Well, that's what analyzing evaluator does.

So, what we'd like to see, is that when calling square, in step [3],
we "know" it's an application, so we jump straight into action:

[new step 1] lookup *, lookup x, lookup x, apply *.

How do we do this? First we analyze the expression. After analysis,
then we package the information into a procedure:

(lambda (env) (apply (lookup * env)
(list (lookup x env) (lookup x env))))

Then, every time we call square, we just call the above procedure

with the appropriate environment. (i.e. for (square 8), give it an
environment where x is 8).

In analyzing-eval, the compiled expression won't look exactly like
this, because we have to handle general cases.

So here's the model:
(define (analyzing-eval exp env) ((analyze exp) env))

Analyze the expression, then when it's time for evaluation, plug in
the environment.

Analyze-lambda:
(lambda <param> <body>)
<body> =analyze=> <analyzed-body>

(lambda (env)
(make-procedure <param> <analyzed-body> env))

Here is where most of the benefits of analysis will come. The
difference is that we analyze the body BEFORE we make the procedure,
so when it comes to calling this procedure, all we have to do is take
the analyzed-body and pass in the appropriate environment (as we
mentioned earlier about square)

Analyze-application: (for lambda-created procedures)
(<proc> <operands>)
<proc> =analyze=> <analyzed-proc>
<operands> =analyze=> <analyzed-operands>

(lambda (env)
(let ((proc (<analyzed-proc> env))
(operands (map (lambda (a) (a env)) <analyzed-operands>)))
((procedure-body proc)
(extend-environment (procedure-parameters proc)
operands
(procedure-environment proc))))

Questions about analyzing eval:
1. Which of the following would have speedup in analyzing eval?
a. (+ 1 2)
b. (((lambda (x) (lambda (y) (+ x y))) 5) 6)
c. (map (lambda (x) (* x x)) '(1 23 456 7 89 10))
d. (define fib
(lambda (n)
(if (or (Fn0) (=n1l)) 1
(+ (fib (- n 1)) (fib (- n 2)))))

(fib 5)
e. (define fact
(lambda (x) (if (= x 0) 1 (* x (fact (- x 1))))))

f. (accumulate cons nil '(1 2 3 45 6 7 8 9 10))
Remember, the [non-primitive] procedure must be CALLED MORE THAN ONCE
for there to be speedup!

