Environment Diagrams
Start by:
1. Create a box called the global environment. This box starts out with all the bindings for primitives like +, cons, map, etc.
2. Set the current frame to be the global environment.
3. Rewrite all the sugar-coated procedure definitions and lets to their raw forms:
(define (square x) (* x x)) => (define square (lambda (x) (* x x)))
(let ((a 5)
 (b 10)) => ((lambda (a b) (+ a b)) 5 10)

 (+ a b))
4. Evaluate your expressions, one by one.
Evaluation rules:
· constant, self evaluating.
· variable, try to find a binding for it in the current frame. Failing that, follow what environment the current frame points to, and try to find the binding there, and so on, until you reach the global environment. If it’s still not in the global environment, then you can’t find it; it’s an error!
· define expression, first evaluate the value to bind to according to these evaluation rules, then add an entry into the current frame for the variable pointing to that value.
· lambda expression, draw two bubbles next to each other. The first bubble should point to the text of the lambda – the argument list and the body – and the second bubble should point to the current frame. The frame this circle points to is called the “procedure environment”.
· let expression, this should have been converted into a lambda with arguments, which you should treat as a compound procedure call.
· set! expression, evaluate the value to set! to. Then, for the given variable, find its closest binding from the current frame, and overwrite the old value with the new value.
· any other special forms, just evaluate what you’re supposed to in the current frame.
· procedure call, check if the procedure is a:
· primitive procedure, these work by magic, so just apply the procedure in your head.
· compound procedure, evaluate all the subexpressions (including the operator) first. Then, create a new box, and make this box point to the “procedure environment” box of the procedure. Note that you do not necessarily point to the current frame! Set this new box as the new current frame, and add all the parameters into the box, and have them point to the argument values you evaluated. Evaluate the body of the procedure in the current frame. Once done, go back to the frame from which you made the procedure call.
And perhaps most importantly,
DON'T PANIC
