Your name ___ login cs61a–_______

Question 0:

Write your name and login on each page, and read and sign the statement below:

	By signing on the following line, I acknowledge that I’m a huge jerk if I miss Question 0 on the real exam.

Question 1:
What will Scheme print? If an expression produces an error message, simply write “error”; if the value of an expression is a procedure, simple write “procedure”.

(keep (lambda (x) x)
 (every (lambda (y) (if (even? y) #t y))
 ‘(1 3 3 7)))

(1 3 3 7)
(and or (not #f) (not not) 2)

#f
Notes: Recall that anything that isn’t #f is interpreted as “true” by Scheme. This explains why keep above keeps each of the numbers, and why (not not) returns #f.
Question 2:

What will Scheme print in response to the following expressions? If an expression produces an error message, simply write “error”. Also, draw a box and pointer diagram for the value produced by each expression.
(cons (list 1 3) (append (list (cons 2 3)) (list 4)))

((1 3) (2 . 3) 4)
(list (append (list 3) (cons 4 ‘())))
((3 4))
Question 3:
(define (square x) (* x x))
(define (foo x y) (+ x (* y y)))

(foo (* 2 2) (square 3))

How many times is * called in:

Normal order
4

Applicative order
3
Question 4:

What is the order of growth in time of the following procedure foo, in terms of its argument value n? Also, does it generate an iterative process or recursive process?

(define (foo n)

 (if (even? n)

 (mystery n)

 (mystery (+ n 1))))

(define (mystery x)
 (cond ((< x 1) 1)

 ((even? x) (+ 1 (mystery (- x 1))

 (mystery (- x 2))))

 (else (+ 1 (mystery (- x 2))))))

_____ Θ(1) _____ Θ(n) __x__ Θ(n2) _____ Θ(2n)
_____ Iterative __x__ Recursive
Notes: Consider how many times mystery is called with an even argument, and then how many times mystery is called with an odd argument. Then figure out how those calls are related.
Question 5:
Sometimes when we see lots of parentheses around a single variable, we get confused as to what it’s supposed to be doing:
((((f))) 1 3)

Write a procedure make-nested that takes a number parens and a procedure end-with and returns a procedure that, when called with parens number of nested parentheses, will invoke end-with after removing itself from the nested parentheses. For the example above, we would use:

(define f (make-nested 3 +))

Which would cause ((((f))) 1 3) to return 4 because there are three nested parens directly around f, and then + is called on 1 and 3.

(define (make-nested n fn)
 (if (= n 0)

 fn
 (lambda () (make-nested (- n 1) fn))))
Notes: Looks complicated, but it shouldn’t be – you know how to return a function, and it’s simply a matter of returning nested functions with the correct body at the end. Namely, the structure of f should look like:
(lambda () (lambda () (lambda () +)))
Question 6:
Write sent-fn that takes an arithmetic function and a list of sentences of numbers and returns a new list of sentences that is the result of calling the function each number in each sentence. For example:
> (sent-fn square ‘((2 5) (3 1 6)))

((4 25) (9 1 36))
Use higher order functions, not recursion, and respect all relevant data abstractions!
(define (sent-fn fn ls)
 (map (lambda (s) (every fn s)) ls))

Notes: The main point to get here is to respect all the relevant data abstractions; only use every on sentences, and map on lists. Note that I used the temporary variable ‘s’ for the lambda to remind myself that each element of ls is a ‘s’entence.
Justin Chen CS61A Fall 2009

2
Justin Chen CS61A Spring 2010

1

