CS61A Notes – Week 2: Order of evaluation, recursion, procedures as data (solutions)
Applicative vs. Normal Order
QUESTIONS

1. Above, applicative order was more efficient. Define a procedure where normal order is more efficient.
Anything where not evaluating the arguments will save time works. Most trivially,
(define (f x) 3) ;; a function that always returns 3

When you call (f (fib 10000)), applicative order would choke, but normal order would just happily drop (fib 10000) and just return 3.

2. Evaluate this expression using both applicative and normal order: (square (random x)). Will you get the same result from both? Why or why not?

Unless you’re lucky, the result will be quite different. Expanding to normal order, you have (* (random x) (random x)), and the two separate calls to random will probably return different values.
3. Consider a magical function count that takes in no arguments, and each time it is invoked, it returns 1 more than it did before, starting with 1. Therefore, (+ (count) (count)) will return 3. Evaluate (square (square (count))) with both applicative and normal order; explain your result.

For applicative order, (count) is only called once – returns 1 – and is squared twice. So you have (square (square 1)), which evaluates to 1.

For normal order, (count) is called FOUR times:

(* (square (count)) (square (count))) =>

(* (* (count) (count)) (* (count) (count))) =>

(* (* 1 2) (* 3 4)) =>

24
Yoshimi Battles the Pink Recursive Robots

QUESTIONS
1. Write a procedure (expt base power) which implements the exponents function. For example, (expt 3 2) returns 9, and (expt 2 3) returns 8.
(define (expt base power)

    (if (= power 0)

        1

        (* base (expt base (- power 1)))))
2. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each time. How many ways can I go up this flight of stairs? Write a procedure count-stair-ways that solves this for me.

(define (count-ways n)

    (cond ((= n 0) 1)

          ((< n 0) 0)

          (else (+ (count-ways (- n 1))

                   (count-ways (- n 2))))))
3. Define a procedure subsent that takes in a sentence and a parameter i, and returns a sentence with elements starting from position i to the end. The first element has i = 0. In other words,
(subsent ‘(6 4 2 7 5 8) 3) => (7 5 8)
(define (subsent sent i)

    (cond ((= i 0) sent)

          (else (subsent (bf sent) (- i 1)))))

Note that we’re assuming i is valid (or, not larger than length of the sentence).
4. I’m standing at the origin of some x-y coordinate system for no reason when a pot of gold dropped onto the point (x, y). I would love to go get that gold, but because of some arbitrary constraints or (in my case) mental derangement, I could only move right or up one unit at a time on this coordinate system. I’d like to find out how many ways I can reach (x, y) from the origin in this fashion (because, umm, my mother asked). Write count-ways that solves this for me.
(define (count-ways x y)

    (cond ((or (= x 0) (= y 0)) 1)

          (else (+ (count-ways x (- y 1))

                   (count-ways (- x 1) y)))))
5. Define a procedure sum-of-sents that takes in two sentences and outputs a sentence containing the sum of respective elements from both sentences. The sentences do not have to be the same size!
(sum-of-sents ‘(1 2 3) ‘(6 3 9)) => (7 5 12)

(sum-of-sents ‘(1 2 3 4 5) ‘(8 9)) => (9 11 3 4 5)

(define (sum-of-sents s1 s2)

    (cond ((empty? s1) s2)

          ((empty? s2) s1)

          (else (se (+ (first s1) (first s2))

                    (sum-of-sents (bf s1) (bf s2))))))
What in the World is lambda?
QUESTIONS: What do the following evaluate to?
(lambda (x) (* x 2))
#[closure arglist=(x) e16fd0]

((lambda (b) (* 10 ((lambda (c) (* c b)) b))) ((lambda (e) (+ e 5)) 5))
1000
((lambda (a) (a 3)) (lambda (z) (* z z)))
9
Procedures as Arguments
QUESTIONS
1. What does this guy evaluate to?

((lambda (x) (x x)) (lambda (y) 4))

4

2. What about his new best friend?

((lambda (y z) (z y)) * (lambda (a) (a 3 5)))
15
3. Write a procedure, foo, that, given the call below, will evaluate to 10.

((foo foo foo) foo 10)
(define (foo x y) y)
4. Write a procedure, bar, that, given the call below, will evaluate to 10 as well.

(bar (bar (bar 10 bar) bar) bar)
(define (bar x y) x)
Procedures as Return Values
QUESTIONS
In lecture, you were introduced to the procedure keep, which takes in a predicate procedure and a sentence, and throws away all words of the sentence that doesn’t satisfy the predicate. The code for keep was:
(define (keep pred? sent)

    (cond ((empty? sent) ‘())

          ((pred? (first sent))

           (sentence (first sent) (keep pred? (bf sent))))

          (else (keep pred? (bf sent)))))
Recall that Brian said to keep numbers less than 6, this wouldn’t work: (keep (< 6) ‘(4 5 6 7 8))

1. Why doesn’t this work?

(< 6) evaluates to #t, not a procedure. Since keep requires a procedure, it fails miserably.
2. Of course, this being Berkeley, and us being rebels, we’re going to promptly prove the authority figure – the Professor himself – wrong. And just like some rebels, we’ll do so by cheating. Let’s do a simpler version; suppose we’d like this to do what we intended:
(keep (lessthan 6) ‘(4 5 6 7 8))
Define procedure lessthan to make this legal.
The insight is that (lessthan 6) must return a procedure. In fact, it must return a procedure that checks if a given number is less than 6.

(define (lessthan n)

    (lambda (x) (< x n)))
3. Now, how would we go about making this legal?
(keep (< 6) ‘(4 5 6 7 8))
The tricky thing here is that (< 6) must also return a procedure as we did up there. That requires us to redefine what ‘<’ is, since ‘<’ the primitive procedure obviously doesn’t return a procedure.

(define (< n)

    (lambda (x) (> n x)))

Note also that we can’t use ‘<’ in the body as a primitive!
Justin Chen CS61A Fall 2009 – notes courtesy of Chung Wu

3

