CS61A Notes – Week 4: Pairs and lists, data abstraction
Pair Up!
Introducing – the only data structure you’ll ever need in 61A – pairs.
A pair is a data structure that contains two things — the “things” can be atomic values or even another pair. For example, you can represent a point as (x . y) and a date as (July . 1). Note Scheme’s representation of a pair; the pair is enclosed in parentheses, and separated by a single period.

Note that there’s an operator called pair? that tests whether something is a pair or not. For example, (pair? (cons 3 4)) is #t, while (pair? 10) is #f.
You’ve read about “cons”, “car”, and “cdr”:

cons: takes in two parameters and constructs a pair out of them. So (cons 3 4) will return (3 . 4).
car: takes in a pair and returns the first part of the pair. So (car (cons 3 4)) will return 3.
cdr: takes in a pair and returns the second part of the pair. So (cdr (cons 3 4)) will return 4.
These will be all we’ll ever need to build complex data structures in this course.
QUESTIONS: What do the following evaluate to?
(define u (cons 2 3))
(define w (cons 5 6))
(define x (cons u w))
(define y (cons w x))
(define z (cons 3 y))
1. u, w, x, y, z (write them out in Scheme’s notation)
2. (car y)
3. (car (car y))

4. (cdr (car (cdr (cdr z))))
5. (+ (cdr (car y)) (cdr (car (cdr z))))

6. (cons z u)

7. (cons (car (cdr y)) (cons (car (car x)) (car (car (cdr z)))))

Then Came Lists
“Lists” are: either the empty list, or a pair whose car is an element of the list and whose cdr is another list. Note the recursive definition – a list is a pair that contains a list! So then how does it end? Wouldn’t there be an infinite number of lists? Not so: an empty list, called nil and denoted ‘() is a list containing no elements. And so it is that every list ends with the empty list. To test whether a list is empty, you can use the null? operator on a list.
So, to make a list of elements 2, 3, 4, we do this:

(define x (cons 2 (cons 3 (cons 4 ‘() ) ) ) )
So then x will be represented as:


(2 . (3 . (4 . ‘() ) ) )
Now, that looks a bit ugly, so Scheme, the nice, friendly language that it is, sugar-coats the notation a bit so you get:


(2 3 4)
It’s a bit annoying to write so many cons to define x. So Scheme, the mushy-gushy language that it is, provides an operator list that takes in many elements and returns them in a list. So we can also define x this way:


(define x (list 2 3 4)
Note: (car x) is 2, (cdr x) is (3 4), and (car (cdr x)) is 3! Well, it’s a bit tiresome to write (car (cdr x)) to get the second element of x. So Scheme, again the huggable lovable language that it is, provides a nifty shorthand: (cadr x). This reads cader, and means “take the car of the cdr of”. Similarly, you can use (caddr x) – caderder – to take the car of the cdr of the cdr of the x, which is 4. You can mix and match the ‘a’ and ‘d’ between the ‘c’ and ‘r’ to get the desired element of the list (up to 4 ‘a’ or ‘d’).

You can also append two lists together. append takes in any number of lists and outputs a list containing those lists concatenated together. So (append (list 3 4) (list 5 6)) returns (3 4 5 6).
Don’t You Mean sentence?
Oh stop grumbling. A “sentence” is actually a special kind of “list” – more specifically, a “sentence” is a flat list – a list without any sublists – whose elements can only be words or numbers. The operators of sentence – first, butfirst, se, etc. – are also much more forgiving in their domains than their list counterparts. For example, here’s a list of equivalences:
first ( car: (first ‘(1 2 3 4)) = (car ‘(1 2 3 4)) = 1

butfirst ( cdr: (butfirst ‘(1 2 3 4)) = (cdr ‘(1 2 3 4)) = (2 3 4)

empty? ( null?: (empty? ’()) = (null? ‘()) = #t

sentence ( list: (se 1 2 3 4) = (list 1 2 3 4) = (1 2 3 4)

sentence ( cons: (se 1 ‘(2 3 4)) = (cons 1 ‘(2 3 4)) = (1 2 3 4)

sentence ( append: (se ‘(1 2) ‘(3 4)) = (append ‘(1 2) ‘(3 4)) = (1 2 3 4)

count ( length: (count ‘(3 4 1)) = (length ‘(3 4 1)) = 3

every ( map: (every square ‘(1 2)) = (map square ‘(1 2)) = (1 4)

keep ( filter: (keep number? ‘(2 k 4)) = (filter number? ‘(2 k 4)) = (2 4)
Note that while se can be used for any combination of single elements and sentences to make another sentence, list, cons, and append are a bit more subtle, and what you pass in as arguments really matters. For example,
(se ‘(1 2) ‘(3 4)) = (1 2 3 4) which is not the same as (list ‘(1 2) ‘(3 4)) = ((1 2) (3 4))
(se ‘(1 2) 3) = (1 2 3) which is not the same as (cons ‘(1 2) 3) = ((1 2) . 3)

(se ‘(1 2) 3) = (1 2 3) which is not the same as (append ‘(1 2) 3) = Error: 3 not a list!
And so on. You must be more careful with what you pass into the list operators! What do you get for all that trouble? Power – you can put anything into lists, not just words and numbers. You will now be able to construct deep lists – lists that contain sublists, which allows you to represent all sorts of cool things. You can also store exotic things like procedures in a list. The possibilities are endless!
QUESTIONS
1. Define a procedure list-4 that takes in 4 elements and outputs a list equivalent to one created by calling list.
2. Write num-satisfies that takes in a sentence and a predicate, and returns the number of elements in the sentence that satisfy the given predicate. USE ONLY HIGHER ORDER FUNCTIONS; DO NOT USE RECURSION.
3. Write all-satisfies that takes in a sentence and a predicate, and returns #t if and only if all of the elements in the list satisfy the given predicate. USE ONLY HIGHER ORDER FUNCTIONS; DO NOT USE RECURSION.

4. Rewrite questions 2 and 3 to take in a list and a predicate. USE ONLY HIGHER ORDER FUNCTIONS; DO NOT USE RECURSION.
5. Write repeat-evens that takes in a sentence of numbers and repeats the even elements twice. USE ONLY HIGHER ORDER FUNCTIONS; DO NOT USE RECURSION.
6. (Hard!) Rewrite question 5 to work on a list of numbers. USE ONLY HIGHER ORDER FUNCTIONS; DO NOT USE RECURSION.
7. Suppose we have x bound to a mysterious element. All we know is this:
(list? x) => #t

(pair? x) => #f

What is x?

8. Add in procedure calls to get the desired results. All the parens below represent lists. Blanks can be left blank:
(



‘a




‘(b c d e)


)



=> (a b c d e)


(



‘(cs61a is)



‘cool



)



=> (cs61a is cool)


(



‘(back to)



‘(save the universe)
)



=> ((back to) save the universe)


(



‘(I keep the wolf)

‘((from the door))
)



=> ((I keep the wolf) from the door)
9. Define a procedure (insert-after item mark ls) which inserts item after mark in ls.

Box and Pointer Diagrams

QUESTIONS: Evaluate the following, and draw a box-and-pointer diagram for each. (Hint: It may be easier to draw the box-and-pointer diagram first.)

1. (cons (cons 1 2) (cons 3 4))

2. (cons ‘((1 a) (2 o)) ‘(3 g))

3. (list ‘((1 a) (2 o)) ‘(3 g))

4. (append ‘((1 a) (2 o)) ‘(3 g))

5. (cdr (car (cdr ‘(((1) 3) (4 (5 6))) )))

6. (map (lambda (fn) (cons fn (fn 6))) (list square 1+ even?))

(Slightly) Harder Lists

1. Define a procedure (depth ls) that calculates the maximum depth of sublists in ls. For example,

(depth ‘(1 2 3 4)) => 1

(depth ‘(1 2 (3 4) 5)) => 2

(depth ‘(1 2 (3 4 5 (6 7) 8) 9 (10 11) 12)) => 3

Remember that there’s a procedure called max that takes in two numbers and returns the greater of the two.

2. Define a procedure (remove item ls) that takes in a list and returns a new list with item removed from ls.
3. Define a procedure (unique-elements ls) that takes in a list and returns a new list without duplicates. You’ve already done this with remove-dups, and it used to do this:

(remove-dups ‘(3 5 6 3 3 5 9 8)) ==> (6 3 5 9 8)

where the last occurrence of an element is kept. We’d like to keep the first occurrences:

(unique-elements ‘(3 5 6 3 3 5 9 8)) => (3 5 6 9 8)

Try doing it without using member?. You might want to use remove above.
4. Define a procedure (count-of item ls) that returns how many times a given item occurs in a given list; it could also be in a sublist. So,
(count-of ‘a ‘(a b c a a (b d a c (a e) a) b (a))) => 7

5. Define a procedure (count-unique ls) which, given a list of elements, returns a list of pairs whose car is an element and whose cdr is its number of occurrences in the list. For example,

(count-unique ‘(a b b b c d d a e e f a a))

=> ((a . 4) (b . 3) (c . 1) (d . 2) (e . 2) (f . 1))

You might want to use unique-elements and count-of defined above.
6. Define a procedure (interleave ls1 ls2) that takes in two lists and returns one list with elements from both lists interleaved. So,

(interleave ‘(a b c d) (1 2 3 4 5 6 7)) => (a 1 b 2 c 3 d 4 5 6 7)
7. Write a procedure (apply-procs procs args) that takes in a list of single-argument procedures and a list of arguments. It then applies each procedure in procs to each element in args in order. It returns a list of results. For example,

(apply-procs (list square double +1) ‘(1 2 3 4))


=> (3 9 19 33)
Expression Lists

Here’s something interesting: a Scheme expression is really just a list! For example, (+ 2 3) is just a list whose first element is the symbol “+”, second element the number 2, and third element the number 3. Similarly, (define x (* 4 5)) is just a list whose first element is the symbol “define”, second element the symbol “x”, and third element the sublist (* 4 5). Given that insight, let’s start manipulating more lists!

QUESTIONS
1. Define a procedure (eval-plus exp) that takes in a valid Scheme expression consisting only of + and numbers, and evaluates it to the correct value. Assume that + always only gets two arguments. For example,

(eval-plus 3) => 3

(eval-plus ‘(+ 3 4)) => 7

(eval-plus ‘(+ 10 (+ 3 2)) => 15
2. We’d like some easy way of creating a lambda expression. Write (make-lambda args body) that takes in the argument list and the body of a procedure, and produces the corresponding lambda expression. For example,

(make-lambda ‘(x y) ‘(+ x (* y x))) => (lambda (x y) (* y x))
3. Recall that a let expression is actually just a lambda expression. Write a procedure (let->lambda exp) that takes in a let expression and returns the corresponding lambda expression. For example,

(let->lambda ‘(let ((x 3) (y 10)) (+ x y))) 


=> ((lambda (x y) (+ x y)) 3 10)
Data Abstraction
Let's look at a simple example, where a student record is represented as a pair of names and student IDs. Furthermore, a name is represented as a pair of words, for first and last names:
((brian . harvey) . 176) ;; student records

((justin . chen) . 205)

Instead of caring and cdring to get a specific piece of data, we'd like to be able to use intuitive selectors to access the data more naturally:
(define (first-name student) ;; domain: student records

    (car (car student)))

(define (last-name student)

    (cdr (car student)))

(define (student-id student)

    (cdr student))

We would also like to use constructors to standardize the creation of student records and names instead of calling (cons (cons first last) sid) every time:
(define (make-name first last)

    (cons first last))

(define (make-student name sid)

    (cons name sid))
It's important to note that, as was stated in lecture, the abstraction barrier is a completely voluntary practice in Scheme. So why do we do it?
1. It's easy to change the internal representation of data. Say we wanted to change a student record to be a pair whose car is their SID and whose cdr is their name. Instead of tracking down every place where we find a name or SID in our code and switch car with cdr, we can simply change our selectors and constructors to match our new representation.
2. It makes the code both more human readable as well as less prone to errors. Instead of forcing the reader to interpret all the cars and cdrs for different calls, they can simply read well-named selectors and constructors. If you're coding something, then you can use your abstractions to avoid unnecessary mistakes by caring or cdring incorrectly.

Finally, note that data abstraction means that your code can work perfectly fine but still be wrong. Using car instead of first on sentences, for example, would functionally do the same thing. However, it would be a data abstraction violation and would be considered wrong. (Evil, maybe, but we're doing it for your benefit. Really.) Always remember to RESPECT THE ABSTRACTION!

QUESTIONS:
1. Write a procedure get-last-names that takes a list of student records (that we defined above) and returns a sentence of each student's last name. Respect the data abstraction! (Hint: What's the domain of get-last-names? What's the range?)
2. Let's say we wanted to change our internal representation for names so that last names come first in the pair. Which selectors and constructors do we have to change? Modify the procedures that require changes so that they work with the new internal representation.
3. Modify the representation of student records to accommodate a student's GPA. You may use list as well as cons for your new representation. Finally, modify and/or create any new selectors or constructors for your new representation.
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