CS61A Notes – Week 5: Trees, deep lists (solutions)
Fake Plastic Trees
QUESTIONS
1. Write (square-tree tree), which returns the same tree structure, but with every element squared. Don’t use “map”!
(define (square-tree tree)

 (make-tree (square (datum tree))

 (square-forest (children tree))))

(define (square-forest forest)

 (if (null? forest)

 ‘()

 (cons (square-tree (car forest)) (square-forest (cdr forest)))))
2. Write (max-of-tree tree) that does the obvious thing. The tree has at least one element.
(define (max-of-tree tree)

 (if (null? (children tree))

 (datum tree)

 (max (datum tree) (max-of-forest (children tree)))))

(define (max-of-forest forest)

 (if (null? (cdr forest))

 (max-of-tree (car forest))

 (max (max-of-tree (car forest)) (max-of-forest (cdr forest)))))
3. Write (listify-tree tree) that turns the tree into a list in any order.
(define (listify-tree tree)

 (cons (datum tree) (listify-forest (children tree))))

(define (listify-forest forest)

 (if (null? forest)

 ‘()

 (append (listify-tree (car forest)) (listify-forest (cdr forest)))))
4. A maximum heap is a tree whose children’s data are all less-than-or-equal-to the root’s datum. Of course, its children are all maximum heaps as well. Write (max-heap? tree) that checks if a given tree is a maximum heap.
(define (max-heap? tree)

 (and (= (datum tree) (max-of-tree tree))

 (max-heaps? (children tree))))))

(define (max-heaps? forest)

 (cond ((null? forest) #t)

 (else (and (max-heap? (car forest))

 (max-heaps? (cdr forest))))))
Binary Search Trees
QUESTIONS
1. Jimmy the Smartass was told to write (valid-bst? bst) that checks whether a tree satisfies the binary-search-tree property – elements in left subtree are smaller than datum, and elements in right subtree are larger than datum. He came up with this:
(define (valid-bst? bst)

 (cond ((null? bst) #t)

 (else

 (and (or (null? (left-branch bst))

 (and (< (datum (left-branch bst)) (datum bst))

 (valid-bst? (left-branch bst))))

 (or (null? (right-branch bst))

 (and (> (datum (right-branch bst)) (datum bst))

 (valid-bst? (right-branch bst))))))))

Why will Jimmy never succeed in life? Give an example that would fool his pitiful procedure.
Checking if the bst property is true for your immediate children’s labels does not guarantee that the property holds for the whole subtree. For example, this tree would fool valid-bst?:

10

/ \

 5 18

 / \

 1
30

The 1 violates the bst property (1 is not larger than 10), but Alex’s algorithm will merely check that 1 is smaller than 18, and move on.

Can you do better?
2. Write (sum-of bst) that takes in a binary search tree, and returns the sum of all the data in the tree.
(define (sum-of bst)

 (cond ((null? bst) 0)

 (else (+ (datum bst)

 (sum-of (left-branch bst))

 (sum-of (right-branch bst))))))
3. Write (max-of bst) that takes in a binary search tree, and returns the maximum datum in the tree. The tree has at least one element. (Hint: This should be easy.)
(define (max-of bst)

 (cond ((null? (right-branch bst)) (datum bst))

 (else (max-of (right-branch bst)))))
4. Write (listify bst) that converts elements of the given bst into a list. The list should be in NON-DECREASING ORDER!
(define (listify bst)

 (cond ((null? bst) ‘())

 (else (append (listify (left-branch bst))

 (list (datum bst))

 (listify (right-branch bst))))))
5. Write (remove-leaves bst) that takes in a bst and returns the bst with all the leaves removed.
(define (remove-leaves bst)

 (cond ((null? bst) ‘())

 ((leaf? bst) ‘())

 (else (make-tree (datum bst)

 (remove-leaves (left-branch bst))

 (remove-leaves (right-branch bst))))))
6. Write (height-of tree) that takes in a tree and returns the height – the length of the longest path from the root to a leaf.
(define (height-of tree)

 (cond ((leaf? tree) 0)

 (else (+ 1 (max (height-of (left-branch tree))

 (height-of (right-branch tree)))))))
7. (HARD!) Write (width-of tree) that takes in a tree and returns the width – the length of the longest path from one leaf to another leaf.

(define (width-of tree)

 (cond ((or (null? tree) (leaf? tree)) 0)

 (else (max (+ 2 (height-of (left-branch tree))

 (height-of (right-branch tree)))

 (width-of (left-branch tree))

 (width-of (right-branch tree))))))
Deep Lists
QUESTION
Write a procedure (file-list file-entry) that, given a file entry for a directory, returns a list of names of the non-directory files anywhere in the corresponding directory tree. For example, given the file entry above, file-list should return the list (proj2.scm proj2-2.scm readme transcript proj2-copy.scm), although not necessarily in that order.
(define (file-list file-entry)

 (if (eq? (car file-entry) ‘FILE)

 (list (cadr file-entry))

 (file-list-of-files (cddr file-entry))))

(define (file-list-of-files file-entries)

 (if (null? file-entries)

 ‘()

 (append (file-list (car file-entries))

 (file-list-of-files (cdr file-entries)))))

Justin Chen CS61A Spring 2010 – notes courtesy of Chung Wu

3

