Notes adapted from Justin Chen, Chung Wu
CS61A Notes – Week 10: Vectors, concurrency
A Concurrent March Through Programming Hell

On your computer, you often have multiple programs running at the same time – you might have your internet browser open browsing questionable pictures, your P2P software downloading non-pirated software, and your instant messaging client lying to a clueless middle-schooler across the country. But you have only one computer, and one CPU! How can you do so many things at once?

What actually happens is, the CPU switches between the different processes very quickly, doing work for each for a little while before moving on to the next, creating the illusion that the programs are running concurrently. The benefits are obvious for users like us so used to multitasking.

Unfortunately, parallelism is one of the biggest headaches you’ll encounter. We’ll attempt to give you a tiny migraine, but in CS162, you’ll be swimming in a large ocean of pain with no shore in sight and a leaking life jacket.
A bit of syntax. To run things concurrently, we use a Scheme primitive called parallel-execute, a procedure that takes in any number of “thunks” – procedures that take no arguments – and executes the thunks in parallel. For example,

(define x 5)
(parallel-execute (lambda () (set! x (+ x 10)))
			(lambda () (set! x (+ x 20))))

will attempt to set x to (+ x 10) and set x to (+ x 20) at the same time. Again, the computer “cheats” by interleaving operation between the different thunks. The answer that we want, of course, is 35 – we want the two thunks executed at the same time, but we still want the result to be as if they executed consecutively.

Now, consider this simple Scheme expression:

(set! x (+ x 10))

What looks like one Scheme operation is actually three operations:

1. lookup the value of x
2. add the value of x to 10
3. store the result into x

Thus, consider the above call to parallel-execute, and keep in mind that the two thunks can be interleaved arbitrarily:

	· lookup value of x
· add 10 to the value of x
· set x to the result
	

· lookup value of x
· add 20 to the value of x
· set x to the result

If the operations were interleaved in the above manner (not interleaved at all), then the value of x at the end is 35.

	· lookup value of x

· add 10 to the value of x

· set x to the result
	
· lookup value of x

· add 20 to the value of x
· set x to the result

In the above interleaving, the value of x ends up being 15. This is not what we wanted!

QUESTION: What are the possible values of x after the below?

(define x 5)
(parallel-execute (lambda () (set! x (* x 2)))
			(lambda () (if (even? x)
					 (set! x (+ x 1))
					 (set! x (+ x 100)))))

Concurrency: The Series

We use something called “serializers” to make sure that certain chunks of code are executed together. First, we need a way to create a serializer:

	(define x-protector (make-serializer))

That was easy. A serializer takes in a procedure, and creates a serialized version of that procedure. So,

	(define protected-plus-10 (x-protector (lambda () (set! x (+ x 10)))))
	(define protected-plus-20 (x-protector (lambda () (set! x (+ x 20)))))

protected-plus-10 still does the same thing as the original thunk – take in no arguments, and add 10 to x. However, because protected-plus-10 and protected-plus-20 are created with the same serializer, their instructions will not be interleaved. Therefore, in doing,

	(parallel-execute protected-plus-10 protected-plus-20)

you can always be sure that x will be set to 35 at the end.

There’s also a primitive object called a “mutex” that’s even lower level than serializers (in fact, serializers are implemented with mutexes). You can interact with a mutex this way:

	(define m (make-mutex))
	(m ‘acquire) ;; “reserves” the mutex
	(m ‘release) ;; “releases” the mutex

Once one program has acquired a mutex, if another wants to acquire the same mutex, it must wait until the mutex is released. So we can do this to obtain the same result:

	(define x-mutex (make-mutex))
	(parallel-execute
	 (lambda () (x-mutex ‘acquire) (set! x (+ x 10)) (x-mutex ‘release))
	 (lambda () (x-mutex ‘acquire) (set! x (+ x 20)) (x-mutex ‘release)))

The calls to acquire and release a mutex marks the critical sections of the code – sections that should not be interleaved with other processes also needing the same mutex.

When working with concurrency, there are four potential kinds of problems:

1. incorrectness – like the second interleaving example above, the answer you get might just be wrong
2. inefficiency – you could lock up the whole computer and always run only one program at a time, but that's horribly inefficient
3. deadlocks – if two programs are competing for the same two resources, there can be deadlocks
4. unfairness – one program may be unfairly favored to do more work than another

QUESTION: The Dining Politicians Problem. Politicians like to congregate once in a while, eat and spew nonsense. One slow Saturday afternoon, three politicians meet to have such wild fun. They sit around a circular table; however, due to the federal deficit (funny that these notes are timeless), they are provided with only three chopsticks, each lying in between two people. A politician will be able to eat only when both chopsticks next to him are not being used. If he cannot eat, he will just spew nonsense.

1. Here is an attempt to simulate this behavior:

	(define (eat-talk i)
	 (define (loop)
	 (cond ((can-eat? i)
	 (take-chopsticks i)
	 (eat-a-while)
 (release-chopsticks i))
 (else (spew-nonsense)))
 (loop)
	 (loop))

	(parallel-execute (lambda () (eat-talk 0))
				(lambda () (eat-talk 1))
				(lambda () (eat-talk 2)))

	;; a list of chopstick status, #t if usable, #f if taken
	(define chopsticks ‘(#t #t #t))

	;; does person i have both chopsticks?
	(define (can-eat? i)
 (and (list-ref chopsticks (right-chopstick i))
		 (list-ref chopsticks (left-chopstick i))))

	;; let person i take both chopsticks
	;; assume (list-set! ls i val) destructively sets the ith element of
	;; ls to val
	(define (take-chopsticks i)
	 (list-set! chopsticks (right-chopstick i) #f)
	 (list-set! chopsticks (left-chopstick i) #f))

	;; let person i release both chopsticks
	(define (release-chopsticks i)
	 (list-set! chopsticks (right-chopstick i) #t)
	 (list-set! chopsticks (left-chopstick i) #t))

	;; some helper procedures
	(define (left-chopstick i) (if (= i 2) 0 (+ i 1)))
	(define (right-chopstick i) i)

	Is this correct? If not, what kind of hazard does this create?

2. Here's a proposed fix:
(define protector (make-serializer))
(parallel-execute (protector (lambda () (eat-talk 0)))
(protector (lambda () (eat-talk 1)))
(protector (lambda () (eat-talk 2))))
	Does this work?

3. Here’s another proposed fix: use one mutex per chopstick, and acquire both before doing anything:
(define protectors
 (list (make-mutex) (make-mutex) (make-mutex)))

(define (eat-talk i)
 (define (loop)
 ((list-ref protectors (right-chopstick i)) ‘acquire)
 ((list-ref protectors (left-chopstick i)) ‘acquire)
 (cond ... ;; as before)
 ((list-ref protectors (right-chopstick i)) ‘release)
 ((list-ref protectors (left-chopstick i)) ‘release)
 (loop))
 (loop))
Does that work?

4. What about this:
(define m (make-mutex))
(define (eat-talk i)
 (define (loop)
 (m ‘acquire)
 (cond ... ;; as before)
 (m ‘release)
 (loop))
 (loop))

5. So what would be a good solution?

(Note: This problem is commonly referred to as “The Dining Philosophers” problem. However, here at Berkeley, we prefer to look down on politicians rather than philosophers.)

CS61A Summer 2010 – George Wang, Jonathan Kotker, Seshadri Mahalingam, Eric Tzeng, Steven Tang
