CS61A Notes – Week 11 (solutions): Metacircular evaluator, analyzing evaluator
Meta-metaevaluation
QUESTION
Write lookup-variable-value, which takes a variable and starting environment and returns the value associated with the variable or an error if it isn't found after the global environment.
(define (lookup-variable-value var env)
 (define (env-loop env)
 (define (scan vars vals)
 (cond ((null? vars)
 (env-loop (enclosing-environment env)))
 ((eq? var (car vars))
 (car vals))
 (else (scan (cdr vars) (cdr vals)))))
 (if (eq? env the-empty-environment)
 (error "Unbound variable" var)
 (let ((frame (first-frame env)))
 (scan (frame-variables frame)
 (frame-values frame)))))
 (env-loop env))
Regular Metaevaluation
QUESTIONS
1. (define (eval-assignment exp env)
 (set-variable-value! (assignment-variable exp) ;; (cadr exp)
 (mc-eval (assignment-value exp) env) ;; (caddr exp)
 env)
 'okay)
Modify your lookup-variable-value code above to create set-variable-value! (which takes an additional value argument).
If we find the variable, instead of returning the corresponding value, we should change it:

... ...

((eq? var (car vars)) => ((eq? var (car vars))

 (car vals)) (set-car! vals val))

... ...
2. (define (eval-definition exp env)
 (define-variable! (definition-variable exp) ;; (cadr exp)
 (mc-eval (definition-value exp) env) ;; (caddr exp)
 env)
 'okay)
Modify your set-variable-value! code above to create define-variable!. You should write a helper add-binding-to-frame! that takes a variable, value, and frame, and adds the binding into the given frame.
This should be easier than the questions before, as we don't have to traverse through other environments at all!
(define (define-variable! var val env)
 (let ((frame (first-frame env)))
 (define (scan vars vals)
 (cond ((null? vars)
 (add-binding-to-frame! var val frame))
 ((eq? var (car vars))
 (set-car! vals val))
 (else (scan (cdr vars) (cdr vals)))))
 (scan (frame-variables frame)
 (frame-values frame))))
(define (add-binding-to-frame! var val frame)
 (set-car! frame (cons var (car frame)))
 (set-cdr! frame (cons val (cdr frame))))
3. Write (extend-environment vars vals base-env) that takes in a list of variables, a list of values, and an environment to extend, and creates the new environment (as when you call a procedure in the environment model).
(define (extend-environment vars vals base-env)
 (if (= (length vars) (length vals))
 (cons (make-frame vars vals) base-env)
 (if (< (length vars) (length vals))
 (error "Too many arguments supplied" vars vals)
 (error "Too few arguments supplied" vars vals))))
4. Scheme's map won't work in mc-eval. Why?
The procedure we would try to map is not a Scheme procedure, but a mc-eval procedure. This will fail since you can't map a list onto some arguments.
5. Write (mc-map fn ls) to work with mc-eval. It will be installed as the primitive procedure associated with map. fn is defined in our new representation.
(define (mc-map fn ls)
 (if (null? ls)
 ls
 (cons (mc-apply fn (list (car ls))) (mc-map fn (cdr ls)))))
Analyzing Evaluator – “This is where the magic happens”

QUESTIONS

Which of the following would have speed up in analyzing-evaluator?

Remember, the non-primitive procedure must be called more than once for there to be speedup!

1. (+ 1 2)

no, primitive

2. (((lambda (x) (lambda (y) (+ x y))) 5) 6)

no, both lambdas only called once

3. (map (lambda (x) (* x x)) '(1 2 3 4 5 6 7 8 9 10))

yes, since we're using the same lambda function for all 10 numbers

4. (define fib

 (lambda (n)

 (if (or (= n 0) (= n 1)) 1

 (+ (fib (- n 1)) (fib (- n 2)))))

(fib 5)

yes, fib is called several times recursively

5. (define fact

 (lambda (x) (if (= x 0) 1 (* x (fact (- x 1))))))

no, since we never call fact! (we only wrote the define :])

6. (accumulate cons nil '(1 2 3 4 5 6 7 8 9 10))

no, since cons is primitive, and is therefore already a Scheme procedure

Justin Chen CS61A Spring 2010

3

