
World of Streams
What is a stream?

A stream is best thought of as a list which is built algorithmically so that all of its elements
don’t have to exist immediately but can be built as needed.  Our book, SICP, calls them delayed
lists.  To make them look even more similar to lists, the constructors used equate those found in
lists:

(cons-stream  <car> <cdr>)  - The car is the element defined for this pair of the
stream, and the cdr is the stream that represents the rest of the elements.

(stream-car  <stream-pair>)  - The stream-pair is a stream, and this gets the first
element of the stream.

(stream-cdr  <stream-pair>)  - The stream-pair is a stream, and this gets the stream
that represents the rest of the elements after the first.

What about delay and force?
To make streams, we need a way to delay an expression from being evaluated and a way

to finish evaluating the delayed expression.  Berkeley Scheme implements delay and force to help
us do this.

Our implementation of delay acts like a syntactic sugar.  When you type,
(delay <expression>) , the interpreter really converts it to the expression,

(lambda () <expression>) , before continuing to evaluate.  Notice how putting the
expression into the body of the procedure will cause it to only evaluate when the procedure is
evaluated.  This construct delays the evaluation of the expression.  A delayed expression is
commonly known as a thunk (you thunk about it, but never evaluated it).

Because the result of delay is a procedure, we know what force must do to finish
evaluating the delayed expression.  Our implementation of force simply evaluates the procedure,
causing the body of the procedure to be evaluated as well.

(delay <exp>)  - Causes the expression exp not to be evaluated until it is applied as an
actual parameter to force.

(force  <delayed-exp>)  - Causes the delayed expression delayed-exp to be evaluated.

What are useful stream functions?
The book goes over how to write stream functions that can be extremely useful in

practice.  These parallel those functions written for lists (since streams are the same as lists,
except for the delayed evaluation).

(stream-ref  <stream> <index>)  - Returns the element in the index position of the
given stream.

(stream-map  <procedure> <stream>)  - Applies procedure to each element in
stream and returns a stream of the results.

(stream-for-each <procedure> <stream>)  - Applies procedure to each element
in stream, but does not return any specified value.
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(stream-filter  <predicate> <stream>)  - Returns a stream containing only
those elements in stream for which the predicate is true.

(stream-map  <procedure> <stream1> <stream2> ... <streamn>)  -
Applies procedure to the elements at the same indexes in the given streams.  The
results are then returned in a stream1.  If stream1 is the empty-stream, stream-map
stops mapping and returns the stream resulting up to that point.

(interleave <stream1> <stream2>)  - Interleaves the elements of both streams
together to make a single stream.  The new stream starts with the 1st element of
stream1, followed by the 1st element of stream2, followed by the 2nd element of
stream1, followed by the 2nd element of stream2, and continuing.

Some techniques for developing streams.
You can make extremely simple streams.  Naturally the simplest would look and be made

like lists, but the more impressive streams are the infinite streams.  Imagine if you tried to make a
list of all integers above some number n.

(define (ints-gt-n  n)
  (cons n (ints-gt-n  (+ n 1))))

You should be leery about actually using the procedure.  It doesn’t have a base case, and will
never stop adding a new element to the list.  A sample substitutional method evaluation would be
as follows:

1. (ints-gt-n  0)

2. ( #<(n) (cons n (ints-gt-n  (+ n 1)))>  0)

3. (cons 0 (ints-gt-n  (+ 0 1)))

4. ( #<cons>  0 ( #<(n) (cons n (ints-gt-n  (+ n 1)))>  ( #<+> 0 1)))

5. ( #<cons>  0 ( #<(n) ( cons n ( ints-gt-n  (+ n 1)))>  1))

6. ( #<cons>  0 (cons 1 (ints-gt-n  (+ 1 1))))

7. ( #<cons>  0 ( #<cons>  1 ( #<(n) (cons n (ints-gt-n  (+ n 1)))>  ( #<+> 1 1))))

8. ( #<cons>  0 ( #<cons>  1 ( #<(n) (cons n (ints-gt-n  (+ n 1)))>  2)))

9. ( #<cons>  0 ( #<cons>  1 (cons 2 (ints-gt-n  (+ 2 1)))))

10. And So On...

What if we wrote the same thing, except for using cons-stream instead of cons?

(define (ints-gt-n  n)
  (cons-stream n (ints-gt-n  (+ n 1))))

This doesn’t have the same infinite recursive property because the cdr part of the stream pair is
delayed until its value is needed.  Of course, we could have a problem with a procedure that
counted the number of elements in the resultant stream; it would never reach the end!
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1 This was defined in the homework.  It's generally useful since it can take the place of the first
defined stream-map and is far more flexible.  It's defined on page 325 of the 2nd Edition SICP.



How does the delaying help make the problem tractable?  Let's do a step by step
comparison of the evaluation2:

1. (ints-gt-n  0)

2. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  0)

3. (strea m-cons 0 (ints -gt-n  (+ 0 1))) 3

4.

A value was actually returned by evaluating the expression!  It returned a stream pair
who's cdr never needed to be evaluated!  Using the normal cons procedure, we needed to evaluate
all of the expressions in the list because it wasn't a special form, but because cons-stream is a
special form, the last expression didn't have to be evaluated.

How streams are used like lists.
Now how do streams work?  It would be nice to see how cdring through a stream allows

us to get to later values in the list even though they don't exist already!  (Imagine that!  Making up
a list as we go!  Isn't that called improvisation?  An improvised list?)  Let's start with the stream
given above.  What if we took three stream-cdrs of it?

1. (stream-cdr  (stream-cdr  (stream-cdr                               )))

a. (ints-gt-n  (+ 0 1))

b. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  ( #<+> 0 1))

c. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  1)

d. (stream-cons 1 (ints-gt-n  (+ 1 1)))

2. (stream-cdr  (stream-cdr                               ))

a. (ints-gt-n  (+ 1 1))

b. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  ( #<+> 1 1))

c. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  2)

d. (stream-cons 2 (ints-gt-n  (+ 2 1)))
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3 It may look like I've done something wrong, but don't forget the expression isn't evaluated and
that stream-cons is a special form.

2 To help show that a stream pair is not a normal pair, I've double-boxed the cdr to indicate that
what it points to is actually a delayed expression.  I've also put the delayed expression in a
rounded corner box to show that it was delayed.

0

(ints-gt-n (+ 0 1))

0

(ints-gt-n (+ 0 1))

1

(ints-gt-n (+ 1 1))



3. (stream-cdr                               )

a. (ints-gt-n  (+ 2 1))

b. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  ( #<+> 2 1))

c. ( #<(n) (stream-cons n (ints-gt-n  (+ n 1)))>  3)

d. (stream-cons 3 (ints-gt-n  (+ 3 1)))

3.

A more complex stream.
Using the stream-map that takes multiple streams, you can easily make an add-streams

and then develop a stream by adding itself to its future elements.  An example of this technique is
the stream of Fibonacci numbers, (0 1 1 2 3 5 8 ...) .

(define fibs
  (c ons-stream 0 (cons-stream 1 (add -stream fibs
                                            ( stream-cdr  fibs ) )))

Notice that the only reason why this works is that the first two elements of the stream are
predefined before the rest of the stream is evaluated.  If this were not the case, we may have a
problem with recursively evaluating the rest of the stream.  This works by continuously building
the stream by using previous elements in the stream. The equation for this is an+2=an+an+1 where
a0=0 and a1=1.

Now let's trace through the first few cdrs of this stream.  Before we go ahead and do this,
I'll give the definition of add-streams because we'll need it.

(define (add-streams s1 s2)
  (stream-map + s1 s2))

Now we can start the step-by-step evaluation of four4 stream-cdrs on the fibs stream.

1. (stream-cdr  (stream-cdr  (stream-cdr  (stream-cdr                              

                                                                  ))))

a. ( cons-stream 1 (add-stream fibs (stream-cdr  fibs )))

b. (cons-stream 1 (add-stream fibs (stream-cdr  fibs)))
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2

(ints-gt-n (+ 2 1))

3

(ints-gt-n (+ 3 1))

4 If you still don't see the pattern, then you are invited to continue the hand analysis beyond four.

0

(cons-stream 1 (add-stream fibs
                           (stream-cdr fibs)))



2. (stream-cdr  (stream-cdr  (stream-cdr  

                                                  )))

a. ( add-stream fibs (stream-cdr  fibs)))

b. ( #<(s1 s2) (stream-map + s1 s2>  :fibs scdr:fibs) 5

c. (stream-map + :fibs scdr:fibs)

d. ( #<stream-map>  #<+> :fibs scdr:fibs) 6

e. (stream-cons ( #<+> (stream-car :fibs) ( stream-car scdr:fibs) )
       (stream-map #<+> (stream-cdr  :fibs) (stream-cdr  scdr:fibs) ))

f. (stream-cons ( #<+> 0 1)
             (stream-map #<+> (stream-cdr  :fibs) (stream-cdr  scdr:fibs) ))

g. (stream-cons 1
             (stream-map #<+> (stream-cdr  :fibs) (stream-cdr  scdr:fibs) ))

3. (stream-cdr

    (stream-cdr                                                     ))

a. ( stream-map #<+> (stream-cdr  :fibs) (stream-cdr  scdr:fibs))

b. ( #<stream-map > #<+> scdr:fibs scdr:scdr:fibs)

c. (stream-cons ( #<+> (stream-car scdr:fibs)  ( stream-car scdr:scdr:fibs) )
   (stream-map #<+> (stream-cdr  scdr:fibs)  (stream-cdr  scdr:scdr:fibs) ))

d. (stream-cons ( #<+> 1 1)
         (stream-map #<+> (stream-cdr  scdr:fibs)  (stream-cdr  scdr:scdr:fibs) ))

e. (stream-cons 2
         (stream-map #<+> (stream-cdr  scdr:fibs)  (stream-cdr  scdr:scdr:fibs) ))

4. (stream-cdr                                                          )

a. ( stream-map #<+> (stream-cdr  scdr:fibs)  (stream-cdr  scdr:scdr:fibs))

b. ( #<stream-map > #<+> scdr:scdr:fibs scdr:scdr:scdr:fibs)

c. (stream-cons ( #<+> (stream-car srdr:scdr:fibs)
                   ( stream-car scdr:scdr:scdr:fibs) )
             (stream-map #<+> (stream-cdr  scdr:scdr:fibs)
                              (stream-cdr  scdr:scdr:scdr:fibs) ))
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1

(add-stream fibs
            (stream-cdr fibs))

1

(stream-map #<+> (stream-cdr :fibs)
                 (stream-cdr scdr:fibs))

2

(stream-map #<+> (stream-cdr scdr:fibs)
                 (stream-cdr scdr:scdr:fibs))

6 I'll be substituting in the logical answer that stream-map evaluates to.  I don't want to give away
the homework.

5 You'll have to excuse me for this strange notation, but it was becoming too cluttered and tedious
putting the streams directly into the expressions.  :fibs should be replaced with what the symbol
fibs is bound to, and scdr:fibs should be replaced with the stream-cdr of what the symbol fibs is
bound to.  I'll let you guess what scdr:scdr:fibs stands for.



d. (stream-cons ( #<+> 1 2)
                   (stream-map #<+> (stream-cdr  scdr:scdr:fibs)

                              (stream-cdr  scdr:scdr:scdr:fibs) ))

e. (stream-cons 3
                   (stream-map #<+> (stream-cdr  scdr:scdr:fibs)

                              (stream-cdr  scdr:scdr:scdr:fibs) ))

4. (stream-cdr                                                               )

Another way to visualize how we actually came up with this definition of Fibonacci
numbers is by looking at the equations, an+2=an+an+1 where a0=0 and a1=1.  Notice that the first two
elements are given to us, a0=0 and a1=1.  Those elements that follow will just be related to the
previous elements in the stream,an=an-2+an-1.  We start the generalization of stream at a2, so we can
see that adding all of the elements starting from beginning of the Fibonacci stream with those
elements starting at the cdr of the Fibonacci stream will give us the rest of the elements, from a2

into infinity.  Here's a diagram modified from SICP7 illustrating this:

Making Streams out of Multiple Streams
Using stream-map tends to be useful for taking one or more streams, performing some

operation on each of the elements of the stream(s), and returning a new stream.  The fibs stream
only shows the combination of a stream with part of itself to create the rest of itself.  By
combining a stream with a goal stream, it is also possible to create the rest of the goal stream.  I’ll
go through some steps to show how useful this technique can be.  Let’s start with a stream of
ones.

(define ones (cons -stream 1 ones ) )
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2

(stream-map #<+> (stream-cdr scdr:scdr:fibs)
                 (stream-cdr scdr:scdr:scdr:fibs))

7 Abelson & Sussman, SICP 2nd Edition, pg 329

1  1  2  3  5   8  13  21 ... = (stream-cdr fibs)
0  1  1  2  3   5   8  13 ... = fibs

0  1  1  2  3  5  8  13  21  34 ... = fibs

(stream-cdr (stream-cdr fibs))

+



Now we’d like to define a stream of all integers equal to or greater than one, and name it
integers.  Let’s try to draw a picture that shows two streams that could be combined to create the
wanted stream:

This seems easy enough.  As long as we add the streams together to find the rest of one of the
given streams, we can produce a complete stream.  The code to produce the above stream is:

(define integers (cons-stream 1 (stream-map + ones integers)))

Compare this to the ints-gt-n stream constructor.  Notice that both add one to each previous
element of the stream, but this one does it using two streams, map and the + operator.

Now let’s make a stream containing all lists that contain all integers from 1 to any number
n in ascending order.  The stream would look like:

str-o-ints  → ((1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) ...)

How should we approach this problem?  You certainly can’t add any of our previous streams to
come up with this stream.  Let’s start with the diagram.

If we can find a procedure op that will take each element of both streams to form the needed
elements, then we’ve solved our problem.  So what procedure op will take the number and attach
it to the end of the previous list of numbers?

(define ( op num lst)  (append lst  (list num)) )

Now we can create the str-o-ints stream.

(define str-o-ints  (cons-stream ‘(1)
                      (map op (stream-cdr  integers) str-o-ints )))

Another useful method of creating new streams is by using stream-filter.  We can create the
stream of odd integers starting from 1 by the following expression:

(define odd-ints  (stream-filter odd? integers))
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1  1  1  1  1  1  1  1 ... = ones
1  2  3  4  5  6  7  8 ... = integers

   1  2  3  4  5  6  7  8  9 ... = integers

(stream-cdr integers)

   +

  2      3        4          5      ... = (stream-cdr integers)

 (1)   (1 2)   (1 2 3)   (1 2 3 4)  ... = str-o-ints

   (1) (1 2) (1 2 3) (1 2 3 4) (1 2 3 4 5) ... = str-o-ints

(stream-cdr str-o-ints)

   op



An even more complex stream.
There are times when we want to represent streams best calculated using tree like

computations.  An example of this would be making a stream of all binary numbers8.  The stream
of binary numbers would look something like: (0 1 10 11 100 101 110 111 ...) .
Now how should we approach solving this problem?  One hint would be that it is best seen
looking at it in a tree containing all the binary numbers.

Going down one branch adds a 0 to the end, and going down the other branch adds a 1 to
the end.  Assuming that we make all the numbers at each division into more branches, we should
simply be able to use the word9 procedure to add a 0 and a 1 to each number.  The question is,
what's the best way to add them to the end, one after another?  How about the interleave
procedure10?

(define (interleave s1 s2)
  (if (stream-null? s1)
      s2
      (cons-stream (stream-car s1)
                   (interleave s2 (stream-cdr  s1)))))

This interleave procedure will disperse the two streams equally into a new stream.  So
what if we made a stream by mapping a 0 to the end of each element in the binary stream, and
another stream by mapping a 1 to the end of each element in the binary stream, and finally
interleaved them together?  This would produce our necessary nodes in the tree at the first split,
which would mean we'd produce the nodes for the second splits, leading to the correct nodes at
the third splits, and so on...

(define binary
  (cons-stream 0 (cons-stream 1 (interleave
                                     (stream-map (lambda (x) (word x 0))
                                                 ( stream-cdr  binary))
                                     (stream-map (lambda (x) (word x 1))
                                                 (stream-cdr  binary)) ))))
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10SICP 2nd Edition, pg. 341

9 Don't forget, word is only in Berkeley Scheme, not in normal Scheme.

8 This document is not trying to cover different bases of numbers.  If you don't know about
binary, it's about time you found out.  Ask someone, or look it up.
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1000
1001
1010
1011
1100
1101
1110
1111

Notice the 0s in the tree...

0  1

10

11

100

101

110

111

1000
1001
1010
1011
1100
1101
1110
1111

Notice the 1s in the tree...



Let's try a new method of tracing how this works.  We will write out what we can assume
the resultant streams will be given what we already know.  Notice that at first, all we know is that
the first two values in the binary stream are 0 and 1.  The bold numbers are new things in the
stream.  The underlined numbers are those elements in the stream currently being used to
calculate the new value in the stream.  Notice how the interleaving produces one value with a 0
attached and then follows that with a value with a 1 attached.

1. binary → ( 0 1 ...)
( stream -cdr  binary) w/ appended 0 → ( 10 ...)
(stream-cdr  binary) w/ appended 1 → ( 11 ...)

2. binary → (0 1 10 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 ...)

3. binary → (0 1 10 11 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 110 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 111 ...)

4. binary → (0 1 10 11 100 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 110  1000 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 111  1001 ...)

5. binary → (0 1 10 11 100 101 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 110  1000 1010 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 111  1001 1011 ...)

6. binary → (0 1 10 11 100 101 110 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 110  1000 1010  1100 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 111  1001 1011  1101 ...)

7. binary → (0 1 10 11 100 101 110 111 ...)
( stream -cdr  binary) w/ appended 0 → (10 100 110  1000 1010  1100 1110 ...)
(stream-cdr  binary) w/ appended 1 → (11 101 111  1001 1011  1101 1111 ...)

8. And So On...
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