Page <1 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Analyzing Evaluator

Why Analysis Before Evaluaton?

In the evaluatorgval has to evaluate an expression betp@y can be used. The
addition of analysis follows a similar line of thought. Everything must be analyzed before it can
be evaluated. The major question that should be asked is why not skip analysis or do analysis and
evaluation in one single step? The answer is that analysis does preprocessing of expressions once
in their lifetimeand thisprocessing step can be avoided whenever we decide to evaluate them. In
the normal evaluator, we actually do the analysis and evaluation at the same time, but we must
always repeat the analysis step, which can become wasteful.

An analogy to this extra step of preprocessing might be building a device or robot that can
assemble a particular part in an assembly line. We could build the part by continuously consulting
its blueprints and putting it together piece by piece, or we could take the blueprint and build a
machine that can quickly assemble the part every time we wanted to assemble a new one. It might
take some time to build the machine, but it only needs to be done once, and then we can quickly
assemble the particular part when necessary.

What's the Basic Form?

The analysis procedures take one argument, the expression to be analyzed, and return a
procedure with one argument, the environment the expression is evaluated withimavdtais
simple form because to be analyzed, the only information needed is the expression’s form. When
evaluating an expression, the only thing tlfeinges between evaluatioashe environment, so
the analyzer’s result only requires the environment it is being evaluated within.

Analyzer's Form{ anal yze- sonet hi ng <expr essi on>)
Analyzer Result’'s Formianal yzed- expr essi on <envi r onnment >)

What Do Analyzers Look Like?
Our book,SICP,does a wonderful job of describitige uncanny reserf@nce letweenthe
analyang andsimple evaluata Once you know how and why analys done ahead of
evaluation, the rest should be easy to understand. Pages 393 to 398 cover this material and office
hours are always available if you have questions or comiments

! This may look like a éiberate dodge of the subject, and it is. If | were to fill this document
with the information needed to cover thidmct, I'd be duplicating that section S1CP.

Page < >
By Joshu&Cantrell
jic@cory.berkeley.edu

Lazy Evaluator

Normal Order vs. Appli cative Order

Scheme evaluates expressionapplicative order rather thamormal order. The excuse
given inthe first chapterof SICPfor usingapplicative order was that delaying evaluation af
procedurés actual parameters (argumertts)d a tendency of making redundant evaluations in the
future. The example was:

> (define (square x) (* x X))
> (square (+ 5 4))

The result of evaluating this mormal order produced the following series of steps:

(square (+ 5 4))

(* (+54) (+5 4))
(* 9 (+5 4)

(* 99

81

The result of evaluating this applicative order produced the following series of steps:

(square (+ 5 4))
(square 9)

(* 99)

81

Notice how we had to evaluateg= 5 4) twice in ournormal order evaluation, but only once in

our applicative order evaluation. You may be asking why we’d want to take the penalty of
evaluating more redundant expressions just to delay the evaluation of an argument. The reason is
thatit can be useful in some cases. Just like when we weregledtinstreams and delaying

evaluation was useful, sometimes delaying the evaluatiarpofcedures actual parameters

also useful.

Thunk but didn’t do.

In thelazy evaluator we will be delaying expressions that are arguments to procedures by
making thenthunks. Thunks in thelazy evaluator are different than those used in oueain
implementation because of one cpéfeature: when forced, they are evaluated in the same
environment they were delayed in. In our stream implementation, we delayed our expressions by
making them a body of a procedure. The result of this was that when we evaluated the expression
(by applying the procedure to no arguments), it was technically in a different environment than the
one it was delayed in. The frame the expression was evaluated in pointed to the environment it
was delayed in, but was not te@meenvironment the expression was delayed in. In this case the
environment the expression is delayed in is saved wittihtiik and used later when the
expression is finally evaluated.

The termthunk arose because of the analyzing evaluator. The expression could be
analyzed ahead of time, and therefore Wasnk” about, but hadn’t been fully evaluated. It

Page 3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

would later be dthunk” about expression that was finally evaluated using the environment it was
first “thunk” about in.

What elements make up @ahunk?

There are two elements that make upumk. First, you need the delayed expression
which could be pre-analyzed or not. Second, you need a pointer to the environment (or current
frame) that thehunk was made in. The book definethank to have the following structure:

(thunk <del ayed- expressi on> <envi ronnment >)

What needs to behunked?
There are arguments that need tdhumked, and others that don’t. The difference is
described astrict versuson-strict.

non-strict - The body of a procedure is entered before an argument has been evaluated.
gtrict - The argument is evaluated before the body of the procedure is entered.

Primitive procedures astrict, so their arguments must be evaluated before they are applied.
Compound procedure anen-strict, so their arguments atleunked and then they are applied.

Where do weunthunk?

We need taunthunk an expression in three locations. The first isuthtbunking of all
arguments tatrict procedures (in our case, only primitive procedures). The secanthusking
the predicate of aif statement when it is evaluated (becauséttloe #f value must be returned
before we know whether to choose the consequent or alternative expression). The third is
unthunking the result that is returned to the user (obviously, the user doesn’t want an unevaluated
expression if one is returned).

Lazy Lists vs. Streams

Before we made up streams to get around the fact that everything is evaluated in
applicative order. Now withnormal order evaluation, everything is delayed when it's used as the
argument to a compound procedure. To make a pair wittthtw&ed values, all that needs to be
done is make our oweons, car, andcdr imitators.

(define (cons x y) (lanmbda (nm) (
(define (car z) (z (lanmbda (p q)
(define (cdr z) (z (lanmbda (p q)

m X

Note that we could also have used message passing because that would have lead to the values
beingthunked
The main difference between dagy lists andstreams is that only thedr part of a
streamwas delayed, while both tloar andcdr part of alazy list is delayed. This creates a super
lazy stream. Page 410 §iCP shows some of the equivalentsssbam procedures that are for

lazy lists.

Page <4 >
By Joshu&Cantrell

jic@cory.berkeley.edu

Memoizing Thunks vs. NotMemoizing Thunks

When dealing with functions, we decided that we coodtinoizethe value a function
returned given partidar argument®ecause functions (by definition) will always return the same
value given the same input. Then when we approached streams, since they were alsalfunctio
we fourd out we could use the same methodhemoizationgo increase the efficiency and speed
of streams. Now, when dealing with tlagy evaluator, we have the choice taemoizeathunk’'s
value after it has been finally evaluated, and use that value everywhere it appears instead of
reevaluatingti

Memoizationof thunks is unlike what was done with timeemoizatiorof functions
because thunk may look the same as anotliaunk, but would still be ealuatedseperately
because eadhunk would still be a unique entity. One way to visualizbuak is as an object
that points to the expression needed tevmuted or some result of an expression (what's
created whememoizatioroccuresafte the first evaluation of théhunked expression)

As an example here are steps for the drawing of an environment diagramemtsized
andunmemoizedhunks. Notice how thainmemoizedhunks are never replaced with the
resulting value, whereas theemoizedhunks are. Also notice how eathunked expression

makes its owrthunk object. Thethunksalso point to the environment they are evadatithin.
> (define (fn x a) (+ x x a))
> (fn (* 23) (+23))

Unmemoized Thunking Memoized Thunking
CFg| Stepl: CF{g] Stepl:
fn %} (define (fn x @) (+ x x a)) fn %} (define (fn x @) (+ x x a))
P:x, a P:x, a
B:(+ xx a) B:(+ xx a)
CFA9 Step2: CFg Step2:
n—tsgh (29029 b (23 (+23)
. P:x, a P:x, a
CF+1 | B:(+ x x a) CF+1 | B:(+ X x a)
X :<‘><»(* 23) X (*23)
b 29) e 29)

CF3g| Step3: CFg| Step3:
fn % (+x x a) fn % (+x x a)
P:x, a P:x, a
CF+1 B:(+ x x @) CF+1 B:(+ X x a)

(*23) X (*23)

T dos(+23) L S+ 23)

CF9 Step4: CFJg Step4:
fn :@) +6 x a) fn :@) (+6 x a)
P:x, a Px, a
CF+1 T\Z;E;x X a) CF+1 T\Z;i;x X @)
9

X 536> (+ 2 3) X 6

By Joshu&Cantrell
jic@cory.berkeley.edu

Page < >

Unmemoized Thunking Memoized Thunking
CF3{g Step5: CFA9 Step5:
fn %‘; (+6 6 a) fn %b (+6 6 a)
P:x, a P:x, a
CF+1 T\Bé:g-}x X a) CF+1 T\ii;:(X a)
X OGS (* 2 3) X OG> 6
sz ety
CFg Stepé6: CFg Step6:
fn S@(‘J (+6 6 5) fn S@J (+6 6 5)
P:x, a P:x, a
CF+1 B:(+ x x @) CF+1 [B:(+ xx a)
X (*23) X 6
a a
T (+23) T >bo>5
CF3g Step7: CFAg Step7:
o 1 g 1
P:x, a P:x, a
CF+1 B:(+ x x a) CF+1 B:(+ x x @)
X (*23) X 6
a a
—dos(r29) dess
CFg Step8: CFAg Step8:
{5 1 g 1
P:x, a P:x, a
B:(+ x x a) B:(+ x x a)
X (*23) X 6
e E) TTpdoess

