
Analyzing Evaluator

Why Analysis Before Evaluation?
In the evaluator, eval has to evaluate an expression before apply can be used. The

addition of analysis follows a similar line of thought. Everything must be analyzed before it can
be evaluated. The major question that should be asked is why not skip analysis or do analysis and
evaluation in one single step? The answer is that analysis does preprocessing of expressions once
in their lifetime and this processing step can be avoided whenever we decide to evaluate them. In
the normal evaluator, we actually do the analysis and evaluation at the same time, but we must
always repeat the analysis step, which can become wasteful.

An analogy to this extra step of preprocessing might be building a device or robot that can
assemble a particular part in an assembly line. We could build the part by continuously consulting
its blueprints and putting it together piece by piece, or we could take the blueprint and build a
machine that can quickly assemble the part every time we wanted to assemble a new one. It might
take some time to build the machine, but it only needs to be done once, and then we can quickly
assemble the particular part when necessary.

What’s the Basic Form?
The analysis procedures take one argument, the expression to be analyzed, and return a

procedure with one argument, the environment the expression is evaluated within. They have this
simple form because to be analyzed, the only information needed is the expression’s form. When
evaluating an expression, the only thing that changes between evaluations is the environment, so
the analyzer’s result only requires the environment it is being evaluated within.

Analyzer’s Form: (analyze-something <expression>)
Analyzer Result’s Form: (analyzed-expression <environment>)

What Do Analyzers Look Like?
Our book, SICP, does a wonderful job of describing the uncanny resemblance between the

analyzing and simple evaluators. Once you know how and why analysis is done ahead of
evaluation, the rest should be easy to understand. Pages 393 to 398 cover this material and office
hours are always available if you have questions or comments1.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

1 This may look like a deliberate dodge of the subject, and it is. If I were to fill this document
with the information needed to cover this subject, I’d be duplicating that section of SICP.

Lazy Evaluator

Normal Order vs. Appli cative Order
Scheme evaluates expressions in applicative order rather than normal order. The excuse

given in the first chapter of SICP for using applicative order was that delaying evaluation of a
procedure’s actual parameters (arguments) had a tendency of making redundant evaluations in the
future. The example was:

> (define (square x) (* x x))
> (square (+ 5 4))

The result of evaluating this in normal order produced the following series of steps:

(square (+ 5 4))
(* (+ 5 4) (+ 5 4))
(* 9 (+ 5 4))
(* 9 9)
81

The result of evaluating this in applicative order produced the following series of steps:

(square (+ 5 4))
(square 9)
(* 9 9)
81

Notice how we had to evaluate (+ 5 4) twice in our normal order evaluation, but only once in
our applicative order evaluation. You may be asking why we’d want to take the penalty of
evaluating more redundant expressions just to delay the evaluation of an argument. The reason is
that it can be useful in some cases. Just like when we were dealing with streams and delaying
evaluation was useful, sometimes delaying the evaluation of a procedure’s actual parameters is
also useful.

Thunk but didn’t do.
In the lazy evaluator we will be delaying expressions that are arguments to procedures by

making them thunks. Thunks in the lazy evaluator are different than those used in our stream
implementation because of one special feature: when forced, they are evaluated in the same
environment they were delayed in. In our stream implementation, we delayed our expressions by
making them a body of a procedure. The result of this was that when we evaluated the expression
(by applying the procedure to no arguments), it was technically in a different environment than the
one it was delayed in. The frame the expression was evaluated in pointed to the environment it
was delayed in, but was not the same environment the expression was delayed in. In this case the
environment the expression is delayed in is saved with the thunk and used later when the
expression is finally evaluated.

The term thunk arose because of the analyzing evaluator. The expression could be
analyzed ahead of time, and therefore was “thunk” about, but hadn’t been fully evaluated. It

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

would later be a “thunk” about expression that was finally evaluated using the environment it was
first “thunk” about in.

What elements make up a thunk?
There are two elements that make up a thunk. First, you need the delayed expression

which could be pre-analyzed or not. Second, you need a pointer to the environment (or current
frame) that the thunk was made in. The book defines a thunk to have the following structure:

(thunk <delayed-expression> <environment>)

What needs to be thunked?
There are arguments that need to be thunked, and others that don’t. The difference is

described as strict versus non-strict.

non-strict - The body of a procedure is entered before an argument has been evaluated.
strict - The argument is evaluated before the body of the procedure is entered.

Primitive procedures are strict, so their arguments must be evaluated before they are applied.
Compound procedure are non-strict, so their arguments are thunked and then they are applied.

Where do we unthunk?
We need to unthunk an expression in three locations. The first is the unthunking of all

arguments to strict procedures (in our case, only primitive procedures). The second is unthunking
the predicate of an if statement when it is evaluated (because the #t or #f value must be returned
before we know whether to choose the consequent or alternative expression). The third is
unthunking the result that is returned to the user (obviously, the user doesn’t want an unevaluated
expression if one is returned).

Lazy Lists vs. Streams
Before we made up streams to get around the fact that everything is evaluated in

applicative order. Now with normal order evaluation, everything is delayed when it’s used as the
argument to a compound procedure. To make a pair with two thunked values, all that needs to be
done is make our own cons, car, and cdr imitators.

(define (cons x y) (lambda (m) (m x y)))
(define (car z) (z (lambda (p q) p)))
(define (cdr z) (z (lambda (p q) q)))

Note that we could also have used message passing because that would have lead to the values
being thunked.

The main difference between our lazy lists and streams is that only the cdr part of a
stream was delayed, while both the car and cdr part of a lazy list is delayed. This creates a super
lazy stream. Page 410 of SICP shows some of the equivalents of stream procedures that are for
lazy lists.

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Memoizing Thunks vs. Not Memoizing Thunks
When dealing with functions, we decided that we could memoize the value a function

returned given particular arguments because functions (by definition) will always return the same
value given the same input. Then when we approached streams, since they were also functional,
we found out we could use the same method of memoizations to increase the efficiency and speed
of streams. Now, when dealing with the lazy evaluator, we have the choice to memoize a thunk’s
value after it has been finally evaluated, and use that value everywhere it appears instead of
reevaluating it.

Memoization of thunks is unlike what was done with the memoization of functions
because a thunk may look the same as another thunk, but would still be evaluated seperately
because each thunk would still be a unique entity. One way to visualize a thunk is as an object
that points to the expression needed to be evaluted, or some result of an expression (what’s
created when memoization occures after the first evaluation of the thunked expression).

As an example here are steps for the drawing of an environment diagram with memoized
and unmemoized thunks. Notice how the unmemoized thunks are never replaced with the
resulting value, whereas the memoized thunks are. Also notice how each thunked expression
makes its own thunk object. The thunks also point to the environment they are evaluated within.
> (define (fn x a) (+ x x a))
> (fn (* 2 3) (+ 2 3))

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Unmemoized Thunking
g
fn

P:x, a
B:(+ x x a)

g
fn

P:x, a
B:(+ x x a)

CF

x
a

CF

CF+1

(* 2 3)

(+ 2 3)

g

fn

P:x, a
B:(+ x x a)

Step3:
(+)

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step4:
(+)

x
a

CF

CF+1

6

Step1:
(define (fn x a) (+ x x a))

Step2:
(fn (* 2 3) (+ 2 3))

x x a

x a

(* 2 3)

(+ 2 3)

(* 2 3)

(+ 2 3)

Memoized Thunking
g
fn

P:x, a
B:(+ x x a)

g
fn

P:x, a
B:(+ x x a)

CF

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step3:
(+)

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step4:
(+)

x
a

CF

CF+1

Step1:
(define (fn x a) (+ x x a))

Step2:
(fn (* 2 3) (+ 2 3))

x x a

x a6

(* 2 3)

(+ 2 3)

(* 2 3)

(+ 2 3)

6

(+ 2 3)

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Unmemoized Thunking
g

fn

P:x, a
B:(+ x x a)

Step5:
(+)

x
a

CF

CF+1

6 6

g

fn

P:x, a
B:(+ x x a)

Step6:
(+)

x
a

CF

CF+1

6 6 5

g

fn

P:x, a
B:(+ x x a)

Step7:
17

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step8:
17

x
a

CF

a

(* 2 3)

(+ 2 3)

(* 2 3)

(+ 2 3)

(* 2 3)

(+ 2 3)

(* 2 3)

(+ 2 3)

Memoized Thunking
g

fn

P:x, a
B:(+ x x a)

Step5:
(+)

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step6:
(+)

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step7:
17

x
a

CF

CF+1

g

fn

P:x, a
B:(+ x x a)

Step8:
17

x
a

CF

6 6 a

6 6 5

6

(+ 2 3)

6

5

6

5

6

5

