
Nondeterministic Evaluator

How Amb Works...
To make the evaluator nondeterministic the special form amb1 is added. Amb is given a

list of expressions that represent the possible values of the amb expression. Any of the values can
be chosen, but they don’t all have to make sense given the restrictions we apply in our program.
Because amb chooses a guess whenever it is called, if this guess is discovered to be invalid, it
must have some mechanism to continuously try other possible values until it finds one that is
valid, or is forced to give up. Once it fails, it falls back to the previous amb to try a new value2.
It is also useful to know that amb delays the evaluation of its expressions until it needs the value,
so you can make infinite sets using amb3.

(amb <e1> <e2> ... <en>) - Defines a set of possible resultant values of the expression.
(amb) - The set of no possible values, which always fails.

How Require Works...
The require procedure is a simple application of amb4. It’s written as shown:

(define (require p)
 (if (not p) (amb)))

By looking at our definition of amb, we can see that if the predicate p is not satisfied, (amb) is
evaluated. This causes an immediate failure, and the previously evaluated amb is forced to try a
new value, or else fail if it has already tried all of it’s values.

Keeping track of previously evaluated ambs!
A first step of seeing how amb works is to take a simple procedure and actually trace

through it. In order to trace through the procedure, we need to know how and where to
backtrack when an amb fails! This can be difficult if the proper information isn’t kept available
during tracing the evaluation by hand. The procedure I propose to trace is based on the
prime-sum-pair example given on page 412 of SICP.

(define (prime-sum-pair set1 set2)
 (require (prime? (+ a b)))
 (list a b))

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

4 An if special form with only an alternative case is not an error. An unspecified value is returned
if the consequent case occures.

3 The depth-first search technique used by our evaluator makes infinite amb sets impractical
because if the last amb evaluated has an infinite number of values, it will be trying new values
from that set forever without ever trying any other values from previous amb expressions.

2 This is the way it’s defined in our nondeterministic evaluator. It’s called depth-first search
which blindly picks values delving deeper into a tree like structure until it runs out of possibilities,
and then backs up until it can go further forward. Another name for it is the greedy algorithm,
because it doesn’t take into account hopeless paths.

1 Amb for ambiguously defined.

The major difference between the book’s example and mine is that the book’s takes lists instead
of sets created by the amb special form. The effects are the same except the arguments are of a
different type.

Given the expression to evaluate:

(prime-sum-pair (amb 1 3 5 8) (amb 20 35 110))

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Step 1:
Evaluating the first amb expression, we choose the first value in the amb,
remove it, then take a snap shot of the environment in case we have to
return to try a new value.

Current Evaluation

Saved Backtrack Expression

(prime-sum-pair 1 (amb 20 35 110))

(prime-sum-pair (amb 3 5 8) (amb 20 35 110))

Step 2:
Evaluating the second amb expression, we choose the first value in the amb,
remove it, then take a snap shot of the environment in case we have to
return to try a new value.

Current Evaluation

Saved Backtrack Expression

(prime-sum-pair 1 20)

(prime-sum-pair 1 (amb 35 110))

Step 3:
Evaluation continues as normal until we get to the require procedure...

Current Evaluation
(require (prime? (+ 1 20)))

(require (prime? 21))

(require #f)

(if (not #f) (amb))

(if #t (amb))

Step 4:
This amb function is devoid of values, so it immediately fails. This means we
need to go back to the last evaluated amb in Step 2 and try again using the
saved backtrack expression.

Current Evaluation
(amb)

(prime-sum-pair 1 (amb 35 110))

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Step 5: Current Evaluation

Saved Backtrack Expression

Step 6:

(prime-sum-pair 1 35)

(prime-sum-pair 1 (amb 110))

Current Evaluation
(require (prime? (+ 1 35)))

(require (prime? 36))

(require #f)

(if (not #f) (amb))

(if #t (amb))

Current Evaluation
(amb)

(prime-sum-pair 1 (amb 110))

Step 7:
Must go back to the saved backtrack expression of Step 5.

Step 8: Current Evaluation

Saved Backtrack Expression
(prime-sum-pair 1 110)

(prime-sum-pair 1 (amb))

Step 9: Current Evaluation
(require (prime? (+ 1 110)))

(require (prime? 111))

(require #f)

(if (not #f) (amb))

(if #t (amb))

Step 10:
Must go back to the saved backtrack expression of Step 8.

Current Evaluation
(amb)

(prime-sum-pair 1 (amb))

Step 11:
This amb expression has exhausted all of its possibilites and fails. Must go back
to the saved backtrack expression of Step 1

Current Evaluation
(amb)

(prime-sum-pair (amb 3 5 8) (amb 20 35 110))

As an added feature of the evaluator, we can force the successful evaluation to act as
though it failed and it will compute another answer by continuing from the last “saved backtrack
expression”. The command that allows us to do this is try-again.

Amb’s Equivalent in Mathematics
To help understand how the amb special form works, we can relate it to sets in

mathematics. When we say, “a is an element of the set containing 1, 2, 3, and 4,” or equivalently
a ∈ {1, 2, 3, 4}, it’s the same as (define a (amb 1 2 3 4)). It’s clear that all three
statements are equivalent because they don’t specify the value of a except by saying it’s one of the
following. What about ambs within ambs? (define x (amb 1 2 (amb 3 4)) can be equated
with x ∈ {1, 2, y ∈ {3, 4}}. Notice that both expressions can be easily expanded to be the
definition of a.

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Step 12: Current Evaluation

Saved Backtrack Expression

Step 14: Current Evaluation
(require (prime? (+ 3 20)))

(require (prime? 23))

(require #t)

(if (not #t) (amb))

(if #f (amb))

Done:

(prime-sum-pair 3 (amb 20 35 110))

(prime-sum-pair (amb 5 8) (amb 20 35 110))

Step 13: Current Evaluation

Saved Backtrack Expression

(prime-sum-pair 3 20)

(prime-sum-pair 3 (amb 35 110))

#<unspecified>

Step 15:
Passed the require procedure, so we move on to the next expression in the
procedure body.

Current Evaluation
(list 3 20)

(3 20)

(3 20)

Implementing the Evaluator
SICP decided to build the evaluator off of the Analyzing Scheme MCE because the

differences between the code is found in the analysis procedures and what arguments are needed
to evaluate the analyzed expressions. The new basic form is:

Analyzer’s Form: (analyze-something <expression>)
Analyzer Result’s Form: (analyzed-expression <env> <succeed> <fail>)

The arguments succeed and fail are both procedures with the following structures:

Succeed: (lambda (<value> <fail>) <body>)
Fail: (lambda () <body>)

Succeed is the procedure that is used if the resultant value is a success. The value is the
successful value, and fail is the procedure meant to be called if there is a failure in the future
(normally with the necessity of backtracking). Fail is the procedure used to store the information
needed for backtracking.

There are a limited number of locations where we need to backtrack to when a failure
occurs. These will be the places where we define the fail procedure to give us the means to
properly backtrack. The summary of these places is given on page 428 of SICP:

� amb expressions: to provide a mechanism to make alternative choices if the current choice
made by the amb expression leads to a dead end.

� the top-level driver: to provide a mechanism to report failure when the choices are exhausted.
� assignments: to intercept failures and undo assignments during backtracking.

There are also a limited number of places where the fail procedures will need to be evaluated.
These are also summarized on page 428 of SICP:

� If the user program executes (amb).
� If the user types try-again at the top-level driver.
� When an assignment is undone and further backing out must occur from that point.
� When an amb expression runs out of new values to choose from.

For more depth and the code required to implement this feature, I direct you to pages 426-436 of
SICP.

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

