Page <1 >
By Joshu&Cantrell
jic@cory.berkeley.edu

The Query System

Pattern Matching

There are three elements used in pattern matching, the pattern to match, the datum being
checked, and the frame of currently bound variables. lquany system, our data is represented
using lists, so oupattern matcher looks for lists that follow a given pattern. The return value
from thepattern matcher is a frame with ta variables bound to their matching data, or an
indication of failure

Here are some examples of patterns:
(?x) - This looks for a list containingne element.
(?x ?y) - This looks for a list containinigvo elements that can be the same or different.
(?x ?x) - This looks for a list containinigvo elements that are the same.
(?x . ?y) - This looks for a list containing an element in the car of the dotted pair, and

another element in thegr of the dotted pair.

(5 . ?x) - This looks for a pair with a 5 in its car and anything else icdhe

Pattern Matching Using Unification

Unification is the matching of one pattern to another pattern so that they both make a
pattern consistent to both. The processnification depends on what elememi®being
unified. If the elements are incapable of being made equal, the two patterns camioedhe
Things are unified as follows:

1. If the patterns aratoms' and are equal, the two patterns are already unified.

2. If one of the patterns is\ariable, thevariable must be matched to the other pattern.

3. If both patterns are pairs, then the car of both patterns aredjrahd then thedrs of both
pairs are unified.

4. Anything else is a failure to be unified.

Matching variables to other variables and patterns can be somewhat tricky. It also follows
a set of rules:

If the other pattermsithe sameariable, they are already matched.

If the variable is unbound, then it must be bound to the other pattern

If the variable is bound, then what it's bound to must be unified with the other pattern.
Anything else is a failure to be matched.

PN PRE

! Atoms in this case is anything that isn’t a pair.
2 Note that the other pattern can be a variable.

Page < >
By Joshu&Cantrell
jic@cory.berkeley.edu

As an example, we can try unifyig@x ?x) and((a ?y c) (a b ?z)).

STEP 1. (?X ?x) ((a ?y c) (a b ?z))
a pair apair
Both patterns are pairs, so first unify the ca and then follow that with unifying the ar.
STEP 2: X (a ?y c) 2x >(a ?y c)
avariable a pair

Thefirst patternis avariable, and is not bound to any pattern yet, so we bind it to the
given pattern. (Note that thisis not areaursive definition.)
STEP 3: (?x) ((a b ?z)) ?2x >(a ?y c)
apair apair
Finished unifying the ca, we moveto the ar. The dr consists of pairs. Thismeans
we must first unify the ca and then follow that with unifying the ar.
STEP 4: ?X (a b ?z) ?x >(a ?y c)
apair a par
Thefirst patternis avariable, and is bound to a pattern alrealy, so the pattern to which
it is bound must be unified with the other pattern.

STEP 5: (a ?y c) (a b ?z) 2x >(a ?y c)
apair a pair

Both patterns are pairs, so first unify the ca and then follow that with unifying the ar.

STEP 6: a a 2x >(a ?y c)
an atom an atom

Both patterns are @aoms, and sincethey are equal, they are drealy unified.

STEP 7: (?y c) (b ?z) ?2x >(a ?y ¢)
a pair apair

Finished unifying the ca, we moveto the ar. The dr consists of pairs. Thismeans
we must first unify the ca and then follow that with unifying the ar.

STEP 8: ?y b ?2x >(a ?y c)
avariable an atom 2y > b
Thefirst patternis avariable, and is not bound to any pattern yet, so we bind it to the
given pattern.
STEP 9: (c) (?2) ?2x >(a ?y ¢)
apair apair ?y > b

Finished unifying the ca, we moveto the ar. The dr consists of pairs. Thismeans
we must first unify the ca and then follow that with unifying the ar.

STEP 10: ¢ ?z ?2x >(a ?y ¢)
an atom avariable 2y > b
?z >c

The second pettern is avariable, and is not bound to any pattern yet, so we bind it to the
given pattern.

Page 3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

STEP 11: () () ?x >(a ?y c¢)
an atom an atom ?y > b
?Z > ¢

Finished unifying the ca, we moveto the ar. The ar consists of atoms. Sincethe
atoms are equal, they are drealy unified.

STEP 12: () 0 ?2x >(a ?y ¢)
an atom an atom 2y > b
?z >c

Finished unifying the pattern ?x was bound to with the other pattern, we dso finish
unifying the ca of the pair and move to the adr. The ar consists of atoms. Sincethe
atoms are equal, they are drealy unified.

CONCLUSI ON: ?x >(a ?y c)
(?x ?x) and ((a ?y c) (a b ?z)) 2y > b
both unify to: ?2Z > ¢

((abc) (abc))

Assert! and Rule

In the query system, we are given the capability of either asserting something to be added
into the database, or qydor some information from the database. By default the system
assumes we are asking for information, so in order to tell it that we want to store something, we
need to use thassert! special form:

(assert! <rule or datun®) - Stores the rule or datum in the database for informing
future queries.

To easily define generalizations, the query system has the ability to define rules which
describe data kich can be infeed from other data. Rules can be defined in two $orm

(rul e <concl usi on> <body>) - This defines a particulaonclusion that can be drawn
given the query that makes up tiagly.

(rul e <concl usi on>) - This defines a particul@onclusion that is always true given any
values of the variables inside ttmnclusion®.

SICP’scomplex example of how rules can be used is the descriptapperid.

(assert! (rule (append () ?y ?y)))
(assert! (rule (append (?u . ?v) ?y (?2u . ?z))
(append ?v ?y ?z)))

Thefirst rule is the identity case (which ends up being similar to a base case) for appending two
lists. Anything appended with an etpfist is itself. The second rule says that we can say

® The absence of a query is always a successful query.

Page <4 >
By Joshu&Cantrell
jic@cory.berkeley.edu

(?u . ?2v) appends wity to form(?u . ? 2) given that(append ?v ?y ?2) is true. This rule defines

the very essne of what append does. The elements at the front of the first list are put at the

front of the result, and the rest of the elements in the first list appended to the second list make up
the rest.

And & Or

In our query system, theis a way for us to make sure many conditions all apply. This is
done with theand special form. Thand special form evaluates each query in its body
sequatially, and if one fails, it fails to match.

(and <query;> <query,> ... <query,>)

To make sure that at least one condition applies, thereoisspecial form. Ther
special form evaluates each query in its body simultahe@un parallel), and unless they all fail, it
doesn't fail to tle match.

(or <query;> <query;> ... <query,>)

Not & Lisp-Value
Two peculiar special forms in the quenssm arenot andlisp-value. Both of these
require that the variables be bound with values before they are used, or else the query may have
strange results (or an error).
Thenot special form excldes only tle uracceptablelataof the query The problem with
having unbound variables is that anything can fill that space, so everything that folbayigethn
pattern will be rejectéd

(not <query;>)
Thelisp-value special form is more limited than thet special form in that it requires the
variables all be bound before it can function. If any of the variables are unbound it could generate

an error (our implementation does this), and abort the evaluation of the given query.

(l'isp-value <predicate> <arg;> ... <arg.>)

* This may be what you want, so don't reject it as an illegitimate use footispecial form.

