
The Query System

Pattern Matching
There are three elements used in pattern matching, the pattern to match, the datum being

checked, and the frame of currently bound variables. In our query system, our data is represented
using lists, so our pattern matcher looks for lists that follow a given pattern. The return value
from the pattern matcher is a frame with the variables bound to their matching data, or an
indication of failure.

Here are some examples of patterns:
(?x) - This looks for a list containing one element.
(?x ?y) - This looks for a list containing two elements that can be the same or different.
(?x ?x) - This looks for a list containing two elements that are the same.
(?x . ?y) - This looks for a list containing an element in the car of the dotted pair, and

another element in the cdr of the dotted pair.
(5 . ?x) - This looks for a pair with a 5 in its car and anything else in the cdr.

Pattern Matching Using Unification
Unification is the matching of one pattern to another pattern so that they both make a

pattern consistent to both. The process of unification depends on what elements are being
unified. If the elements are incapable of being made equal, the two patterns cannot be unified.
Things are unified as follows:

1. If the patterns are atoms1 and are equal, the two patterns are already unified.
2. If one of the patterns is a variable, the variable must be matched to the other pattern.
3. If both patterns are pairs, then the car of both patterns are unified, and then the cdrs of both

pairs are unified.
4. Anything else is a failure to be unified.

Matching variables to other variables and patterns can be somewhat tricky. It also follows
a set of rules:

1. If the other pattern is the same variable, they are already matched.
2. If the variable is unbound, then it must be bound to the other pattern2.
3. If the variable is bound, then what it’s bound to must be unified with the other pattern.
4. Anything else is a failure to be matched.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

2 Note that the other pattern can be a variable.

1 Atoms in this case is anything that isn’t a pair.

As an example, we can try unifying (?x ?x) and ((a ?y c) (a b ?z)).

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(?x ?x) ((a ?y c) (a b ?z))STEP 1:
a pair a pair

Both patterns are pairs, so first unify the car and then follow that with unifying the cdr.

?x (a ?y c)STEP 2:
a variable a pair

The first pattern is a variable, and is not bound to any pattern yet, so we bind it to the
given pattern. (Note that this is not a recursive definition.)

?x (a ?y c)

(?x) ((a b ?z))STEP 3:
a pair a pair

Finished unifying the car, we move to the cdr. The cdr consists of pairs. This means

?x (a ?y c)

we must first unify the car and then follow that with unifying the cdr.

?x (a b ?z)STEP 4:
a pair a pair

The first pattern is a variable, and is bound to a pattern already, so the pattern to which

?x (a ?y c)

it is bound must be unified with the other pattern.
(a ?y c) (a b ?z)STEP 5:

a pair a pair
?x (a ?y c)

Both patterns are pairs, so first unify the car and then follow that with unifying the cdr.

a aSTEP 6:
an atom an atom

?x (a ?y c)

Both patterns are atoms, and since they are equal, they are already unified.

(?y c) (b ?z)STEP 7:
a pair a pair

Finished unifying the car, we move to the cdr. The cdr consists of pairs. This means

?x (a ?y c)

we must first unify the car and then follow that with unifying the cdr.

?y bSTEP 8:
a variable an atom

The first pattern is a variable, and is not bound to any pattern yet, so we bind it to the
given pattern.

?x (a ?y c)
b?y

(c) (?z)STEP 9:
a pair a pair

Finished unifying the car, we move to the cdr. The cdr consists of pairs. This means

?x (a ?y c)

we must first unify the car and then follow that with unifying the cdr.

b?y

c ?zSTEP 10:
an atom a variable

The second pattern is a variable, and is not bound to any pattern yet, so we bind it to the
given pattern.

?x (a ?y c)

b?y
c?z

Assert! and Rule
In the query system, we are given the capability of either asserting something to be added

into the database, or query for some information from the database. By default the system
assumes we are asking for information, so in order to tell it that we want to store something, we
need to use the assert! special form:

(assert! <rule or datum>) - Stores the rule or datum in the database for informing
future queries.

To easily define generalizations, the query system has the ability to define rules which
describe data which can be inferred from other data. Rules can be defined in two forms:

(rule <conclusion> <body>) - This defines a particular conclusion that can be drawn
given the query that makes up the body.

(rule <conclusion>) - This defines a particular conclusion that is always true given any
values of the variables inside the conclusion3.

SICP’s complex example of how rules can be used is the description of append.

(assert! (rule (append () ?y ?y)))
(assert! (rule (append (?u . ?v) ?y (?u . ?z))
 (append ?v ?y ?z)))

The first rule is the identity case (which ends up being similar to a base case) for appending two
lists. Anything appended with an empty list is itself. The second rule says that we can say

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

3 The absence of a query is always a successful query.

() ()STEP 11:
an atom an atom

?x (a ?y c)
b?y

c?z
Finished unifying the car, we move to the cdr. The cdr consists of atoms. Since the
atoms are equal, they are already unified.

() ()STEP 12:
an atom an atom

?x (a ?y c)
b?y

c?z
Finished unifying the pattern ?x was bound to with the other pattern, we also finish
unifying the car of the pair and move to the cdr. The cdr consists of atoms. Since the
atoms are equal, they are already unified.

CONCLUSION: ?x (a ?y c)

b?y
c?z

(?x ?x) ((a ?y c) (a b ?z))

both unify to:
and

((a b c) (a b c))

(?u . ?v) appends with ?y to form (?u . ? z) given that (append ?v ?y ?z) is true. This rule defines
the very essence of what append does. The elements at the front of the first list are put at the
front of the result, and the rest of the elements in the first list appended to the second list make up
the rest.

And & Or
In our query system, there is a way for us to make sure many conditions all apply. This is

done with the and special form. The and special form evaluates each query in its body
sequentially, and if one fails, it fails to match.

(and <query1> <query2> ... <queryn>)

To make sure that at least one condition applies, there is an or special form. The or
special form evaluates each query in its body simultaneously (in parallel), and unless they all fail, it
doesn’t fail to the match.

(or <query1> <query2> ... <queryn>)

Not & Lisp-Value
Two peculiar special forms in the query system are not and lisp-value. Both of these

require that the variables be bound with values before they are used, or else the query may have
strange results (or an error).

The not special form excludes only the unacceptable data of the query. The problem with
having unbound variables is that anything can fill that space, so everything that follows the given
pattern will be rejected4

(not <query1>)

The lisp-value special form is more limited than the not special form in that it requires the
variables all be bound before it can function. If any of the variables are unbound it could generate
an error (our implementation does this), and abort the evaluation of the given query.

(lisp-value <predicate> <arg1> ... <argn>)

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

4 This may be what you want, so don’t reject it as an illegitimate use for the not special form.

