
Query System Described by Diagrams

Basic Pattern Matching
The query system works by matching patterns with elements inside a given database

whose elements are defined by the command (assert! <rule or datum>). One way to describe this
occurrence is by passing in a frame with pre-bound variables and creating new frames based on
the matches of the given pattern.

Say the following facts were put into our database:

(assert! (rule (append () ?x ?x)))
(assert! (rule (append (?u . ?v) ?y (?u . ?w))
 (append ?v ?y ?w)))

These rules makes the database act as though we have defined all possible append elements. This
saves us time since we don’t have to type in the infinite possibilities and also makes the database
search faster since we can use unification in pattern matching.

Now we wanted to find the following pattern in the database:

(append ?x (3 4) (1 2 3 4))

The diagram to describe this query is shown to
the right. The incoming frame has no bound
variables because queries always start with
empty frames. In the filter region, the filter goes
through every database entry, using previously
bound variables (none in this case), and returns
all frames with bound variables that match the
given query pattern. In this case the only match
is for ?x to be bound with (1 2).

How about a case that had multiple results? Like the query:
(append ?x ?y (1 2))
Notice how it makes a frame
for each matching pattern. All
of these frames represent
matches and are passed on to
the user (which displays the
answers) or to another filter.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(append ?x (3 4) (1 2 3 4))

?x (1 2)

Incoming
Frame

Outgoing
Frame

Frame
Used in
Filter

(append ?x ?y (1 2))

?x ()Incoming
Frame

Outgoing
Frames

Frame
Used in
Filter

?x (1)

?x (1 2)

?y (1 2)

?y ()

?y (2)

The AND Query Operator
The and operator in the Query System performs sequential filters. Here’s how the

following expression would be drawn:

(and <query1> <query2> ... <queryn>)

An example of using this in an actual query could be:

(and (append ?x ?y (1 2))
(append ?x ?z (1 3)))

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

<query1>

Incoming
Frame

Outgoing
Frames

Frame
Used in
Filter1

<query2>

Frames
Used in
Filter2

...

<queryn>

Frames
Used in
Filtern

Bindings
From
Incoming
Frame

Bindings
From

Filter1
Results

Bindings
From

Filter(n-1)
Results

Bindings
From

Filtern
Results

(append ?x ?y (1 2))

?x ()

Incoming
Frame

?x (1)

?x (1 2)

?y (1 2)

?y ()

?y (2)

(append ?x ?z (1 3))

(append ?x ?z (1 3))

(append ?x ?z (1 3))

?x (1)
?y (2)
?z (3)

?x ()
?y (1 2)
?z (1 3)

failed

The OR Query Operator
The or operator in the Query System performs parallel filters. Here’s how the following

expression would be drawn:

(or <query1> <query2> ... <queryn>)

An example of using this in an actual query could be:

(or (append ?x (2) (1 2))
 (append ?x (3) (2 3)))

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

<query1>

Incoming
Frame

Frame
Used in
Filter1
Bindings
From
Incoming
Frame

Bindings
From

Filter1
Results

Outgoing
Frames

<query2>

Frame
Used in
Filter2
Bindings
From
Incoming
Frame

Bindings
From

Filter2
Results

Outgoing
Frames

...

Frame
Used in

...
Bindings
From
Incoming
Frame

Bindings
From
...

Results

Outgoing
Frames

<queryn>

Frame
Used in
Filtern
Bindings
From
Incoming
Frame

Bindings
From

Filtern
Results

Outgoing
Frames

Incoming
Frame

(append ?x (2) (1 2))

?x (1)

(append ?x (3) (2 3))

?x (2)

The NOT Query Operator
The not operator takes the given bound variable information and fails if the pattern

matches something inside the database. If the pattern doesn’t match something inside the
database, the not operator returns the frame unchanged (no newly bound variables):

(not <query>)

An example of using the not operator would be:

(and (append ?x ?y (1 2))
 (not (append ?x () (1 2))))

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(not <query>)

Incoming
Frame

Outgoing
Frame

Frame
Used in
Filter

if <query> failed

if <query> succeeded
failed

Bindings
From
Incoming
Frame

Bindings
From
Incoming
Frame

(append ?x ?y (1 2))

?x ()

Incoming
Frame

?x (1)

?x (1 2)

?y (1 2)

?y ()

?y (2)

(not (append ?x () (1 2)))

(not (append ?x () (1 2)))

(not (append ?x () (1 2)))

?x (1)
?y (2)

?x ()
?y (1 2)

failed

Another example of using the not operator where we encounter the problem discussed in the book
would be:

(and (not (append ?x () (1 2)))
 (append ?x ?y (1 2)))

The LISP-VALUE Query Operator
The lisp-value query operator is similar to the not operator and applies the given predicate

procedure to the given arguments. If the result is #t, the outgoing frame is the same as the
incoming frame. If the result is #f, there is no outgoing frame and failed is returned. A lisp-value
query would be drawn in the same way as a not operator would, except that if one of the variables
used in it is undefined, the query produces an error (which causes our implementation to exit out
to Scheme):

(lisp-value <pred> <arg1> ... <argn>)

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(not (append ?x () (1 2)))

Incoming
Frame

failed

(lisp-value <pred> <arg1> ... <argn>)

Incoming
Frame

Outgoing
Frame

Frame
Used in
Filter

if return value #t

if return value #f

failed

Bindings
From
Incoming
Frame

Bindings
From
Incoming
Frame

A Normal Database Match1

Normal Database Matches go through the following steps:
1. Unify the rule with the query and current frame.

a. If unification fails, the match fails.2

2. Match succeeds and returns the resulting frame.

Matching Rules in the Query System
Rules are database entries that describe a pattern of possible enteries in the database.

What determines whether the rules match or not is a correspondance with the rule's pattern
followed by an optional matching with a query. The lack of the query in a rule causes the query
to succeed as long as the rule's pattern successfully unifies with the query.

(rule <pattern> <query>) - This defines a particular pattern that, if unifiable, will
return one or more matching query responses, given that the query also matches to one or
more items in the database.

(rule <pattern>) - This defines a particular pattern that, if unifiable, will return a
matching query response.

Notice the keen resemblance to the AND query operator. The difference here is that it's done
during the satisfication of a query, not in the making of a query.

Page < 6 >
By Joshua Cantrell
jjc@cory.berkeley.edu

2 Our query system actually uses a subset of unification in this case, pattern matching, but the
effects are the same.

1 It's normal in that it's not matching to a rule.

Incoming
Frame

Outgoing
Frame

Frame
Used in
Filter

<query>

Bindings
From
Incoming
Frame

<db entry>{unify

Bindings
From
Unification

Incoming
Frame

Frame
Used in
Filter

<query>

Bindings
From
Incoming
Frame

<db entry>{unify

Bindings
From
Unification

<rquery>

Frame
Used in

Rule's Query
Bindings

From
rquery's
Results

Outgoing
Frames

Tracing the Append Rule
As an example of tracing rules, I'm going to use the append rules I have been using

throughout this document.

(assert! (rule (append () ?x ?x)))
(assert! (rule (append (?u . ?v) ?y (?u . ?w))
 (append ?v ?y ?w)))

A simple query would be something like:

(append ?l (3 4) (1 2 3 4))

Page < 7 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(append ?l (3 4) (1 2 3 4))

Incoming
Frame

(rule (append () ?x ?x))

failed

(rule (append (?u . ?v) ?y (?u . ?w)))

?l (?u . ?v)
?y
?u

(3 4)
1

(2 3 4)?w

(append ?v (3 4) (2 3 4))

(rule (append () ?x ?x)) (rule (append (?u . ?v) ?y (?u . ?w)))

F1

F1

failed ?v (?u . ?v)
?y
?u

(3 4)
2

(3 4)?w

(append ?v (3 4) (3 4))

(rule (append () ?x ?x)) (rule (append (?u . ?v) ?y (?u . ?w)))

F2

F2

F1

?v (?u . ?v)
?y
?u

(3 4)
3

(4)?w

(append ?v (3 4) (4))

F3

F3

F3
?v ()
?x (3 4)

F2
Outgoing

Frame

Continued on back...

F1

F2

F3

Making Rules Like Append
Just by looking at the append rule, it isn't necessarily obvious how such a rule was

conceived. The first step to writing a rule like append is to make a list of the simplest cases of
append:

Now we see that there are two possibilities for base case3 rules. It's not yet obvious
which one would be useful:

(rule (append () ?x ?x)) or (rule (append ?x () ?x))

Page < 8 >
By Joshua Cantrell
jjc@cory.berkeley.edu

3 This lower case seems to be a good starting place for making these types of rules. I'm
wondering if it could be given the name obvious case or obvious rule.

?v (?u . ?v)
?y
?u

(3 4)
3

(4)?w

(append ?v (3 4) (4))

F3

F3

F2

Continued from front...

(rule (append () ?x ?x))

failed

(rule (append (?u . ?v) ?y (?u . ?w)))

(append ?v (3 4) ())

F4

F4

?v (?u . ?v)
?y
?u

(3 4)
4

()?w

F3

(rule (append () ?x ?x))

failed

(rule (append (?u . ?v) ?y (?u . ?w)))

failed

F3

F4

Result:
?v ()

F2

?v (2 . ?v)
F1 F2

?l (1 . ?v) F1
}?l (1 . (2 . ())) }

(append (1 2) (3 4) (1 2 3 4))

?l (1 2)

Database Matches:

(append () () ()) (append () (1) (1)) (append (4) () (4))

(append () (1 2) (1 2)) (append (3 4) () (3 4))

Now using our two possible base rules, we need to see what more general cases would
look like by slowly making our base cases more complicated.

Notice that one base rule lead to a dead end. The other looks promising because we could
easily build larger cases from the base case. Now what we need is a rule that will unbuild a large
general case and result in the base case!

By looking at the way the cases are reduced, we can see that our rule will have a form:

(rule (append (?u . ?v) ?x (?u . ?w)) ...)

This can be seen by noticing that at each step, we don't need to break down the middle element,
and only need to break the 1st and 3rd elements into a pair. Now the query part of the rule is
what narrows down to the base case, so we write it so that it will ask for the more narrow case.

(rule (append (?u . ?v) ?x (?u . ?w))
 (append ?v ?x ?w))

Now we have all of the rules necessary for defining all cases of appending one list to another!
Let's repeat them one last time, just so you can see our final result:

(assert! (rule (append () ?x ?x)))
(assert! (rule (append (?u . ?v) ?y (?u . ?w))
 (append ?v ?y ?w)))

Page < 9 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(rule (append () ?x ?x))

(rule (append (3) ?x (3 . ?x)))

(rule (append (2 3) ?x (2 3 . ?x))))

(rule (append (1 2 3) ?x (1 2 3 . ?x)))))

OR

(rule (append ?x () ?x))

(rule (append ?x (1)))) ???
No Satisfactory Solution

