Page <1 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Evaluating Scheme Expressions

What isa Scheme expression?

A Scheme expression is simply something that is made using Scheme’s fohmase
expressions can then be evaluated to return a useful value. The skill of evaluating a Scheme
expression without an interpreter is extremely valuable. Without that ability, writing programs is
extremely difficult because you cannot tell what will producedétgredresults.

Some Simple Expressions

The simplest expressions you should become an expert at evaluating are the non-list
forms. SeMevaluating expressions, suchnambers andboolean, simply evaluate to tireown
values. A non-evaluated self-evaluating expression is sirtipygameashe evaluated
expression's valueThe symboll means “evaluates to.”

o HT O #T (theboolearnvalue#T)

o #F 0O #F (theboolearnvalue#F)

e -13 [0 -13 (the nuneric value-13)

e 4/5 [0 .8 ord4/5 (the numeic value0.8 or rational nuraric valued/5ths®)
* +34.23 [0 34.23 (the nuneric value+34.23)

The other common expression you have to know about syithi@l. Symbols, which act
as identifiers, are normally bound to some other value. When you evaluate them, they are
replaced with the value to which they are bound. If they are not bound to a value aluateely
an error results. For the following examples, assume the syndbbbund to the numbé&r the
symboly is bound to thenevaluated symbol gray, and the symbdh is bound to the procedure
#<(x) (* X x)> s

e x O5 (the number 5)

e y O gr ay (the unevaluated symbgtay)

* z O ERR® (this never truly finishes being evaluated because it results in an error)
o fn O #<(X) (* x xX)> (the procedurét<(x) (* x X)>)

! Look at my document oNormal Forms & Special Forms for an explanation on what forms are,
and examples of some forms in Scheme.

2 Whether it stays rational or notdependanbn the Scheme interpreter's implementation.

3| choo® to represent procedurestagP , P ; ... P.) E1E....E >, whereP; through

P, are the formal parameter symb@d&a names or identifiers), artél throughE, are the
expressions that make up the body of the procedure. At timisyool probably only know about
procedures with one expression in their body. This is fine since that is always a possibility. You
can have zero or more formal parameteas = 0, and you must have at least one expression in
the body of a procedure, so> 0. A procedure without formal parameters represented as
#<()E 1E,...E .

Page < >
By Joshu&Cantrell
jic@cory.berkeley.edu
Another fairly simple expression to evaluate is a quoted expression. A guoted expression
is one that is not evaluated. If it were not quoted, it would be evaluated normally. There are
some funny cases where a quote’s result is specific to a particular interpreter, but I'll just cover
the normal cases.

o HT O #T (theboolearnvalue#T)
e '+34.23 [0 +34.23 (the nuneric value+34.23)

* ‘symbol [symbol (the unevaluategymbolvalue symbol)
e (fn 230) O(@n 230) (the unevaluated list expressi@dn 23 0))
e ((fn 23)0) O((fn 23)0) (the unevaluated list expressi{fn 23) 0))

e (fn1 (fn2 23)0) O@n1 (fn2 23)0)
(the unevaluated list expressi@nl (fn2 23) 0))

List Expressions

Without list expressions, Scheme wouldn’'t dd@Pishlanguage. This is because LISP
stands foLIS Processing. It shouldn'’t be a surprise to you that understanding how to evaluate
these list expressions is crucial to being able to evaluate the majority of useful Scheme
expressions.

The most basic and important of these list expressions jsabedure application list*.
This is the normal form of a list expression in Scheme. Anything else is consideredsiedal a
form. The procedure application list is evaluated by first evaluating all of the expressions (items)
inside the list. Next, given that the first expression evaluated to a procedure, the procedure is
applied to the remaining elements in the list @tieal parameters). If the first expression did
not evaluate to a procedure, an errauss. If the procedure has more or lessnal
parameters than the number of providedtual parameters, an error occurs.

For the following examples the symbaols boundto the numbeb, the symboly is bound
to the unevaluated symbgiay, and the symbdh is bound to the procedure
#<(X) (* x x)> . The newly evalated elements will be in bold and the unchanged elements
in normal type face. Any pre-evaluated value is underlined.

1. (*42) - the expression to evaluate

2. (#<*> 42) - the first expression in the list, the symbpis evaluated

3. (#<> 42) - the second expssion in the list, theumber4, is evaluated

4. (#<*> 4 2) - the third expression in the list, thamber2, is evaluated

5 8 - with all expressions in the list evaluated, the procedure is applied

to the actual parameters 4 and 2, resulting in the list being
replaced by the number (value) 8.

* | made this term up not knowing what the standanm tgould be.

> When | don’t know what the argument list and body of a procedure look like, I'll take the liberty
to represent the proceduretad n> wherefn is the symbbto which the procedure is bound.

® Not knowing what the body of the body of the multiplication procedure looks like, we mus

jump from the application of the procedure to the answer. For procedures where we know what
the bodies look like, we do a substitution of the list with the body of the procedure.

Page 3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

1 (yx) - the expression to evaluate

2. (grayx) - the first expression in the list, is evaluated

3. (gray 5) - the second expression in the listis evaluated

4. ERROR - evaluation is terminated because the syrgbay is not a

procedure.

1 ((#<()__fn>) x) - the expression to evaluate

2. (fn x) - the first expression in the ligt#<() fn>),is alist
expression, so we evaluate its first expression. Its
elements have already been evaluated, so we apply the
procedure to no actual parameters and replace the list
expression with the body of the procedure.

3. (#<(X) (* xx)> X) - the first expression in the ligh, is evaluated

4, (#<(x) (* xx)> 5) - the second expression in the histis evaluated

5 (* 55) - with all expressions in the list evaluated, the procedure
is applied to the actual parameter 5, and the list is
substituted with the body of the procedure with all
thex symbols in the procedure’s body replaced with
the value 5.

6. (#<*> 5 5) - the first expression in the ligt, is evalated

7. 25 - with all expressions in the list evaluated, the procedure is

applied to the actual parameters 5 and 5.

Define Special Form
One of the more importantsgial forms needed to be evaluated isdéfene special form.
This special form allows us to bind symbols to values. The result of binding a symbol to a value is
mostly invisible to us at this pofntWe just need to keep track of tuepe’ of the symbol
(identifier) which is bound to the value. The returned result of evaluatiefjne is unspecified
(in other words, it can be “anything”). I'll go over define when | covetdhida special form.

" I'm using the substitution method because that's what we know at this point. fbish@v

Scheme actually evaltes expressions. It's ancacate representation for functional procedures
only.

8 When we learn about environment diagrams, it'll be more clear what binding a variable entails.

° This is done by first looking in the procedure where the symbol is being evaluated, if the symbol
wasn’'t bound in that procedure, we look in the procedure that the currently being evaluated
procedure is defined; mot there, we continue up through the hierarchy of procedures until we
reach the global environment (where you type in commands to be interpreted). This is known as
lexical scope or alternativelystatic scope.

Page <4 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Lambda Special Form

Thelambda special form is the constructor for producing data of type procedure. As
another one of the more powerful special forms in Scheme, this should be studied carefully.
Notice that a procedure idiast-class data type, so it can be used as an argument, be returned by
a procedure, be bound to a symbol, and beedtin a list. These are the same properties that
booleannumerical, and unevaluated symbolic data have. Below are examples of how to evaluate
lambda.

1. (lambda () 5) - the expression to evaluate
2. #<() 5> - the resulof evaluating the lambda expression, a procedure with

no arguments and a body of the expresSioNote that the
body hashot been evaluated yet.
1. ((lambda (x) (* 5 2)) 24) - the expression to evaluate
2. (#<(X) (*52)> 24) - the result of evaluating the first expression in
the list expression. This was a lambda of one
formal parameter, and body(* 5 2)

3. (#<(x) (*52)> 24) - the result of evaluating the second expression
in the list expression

4, (*52) - the result of applying the procedure to the
actual parametér

5 (#<*> 52) - the result of evaluating the first expression in
the list expressioH.

6. (#<*> 52) - the result of evaluating the second expression
in the list expression.

7. (#<*> 5 2) - the result of evaluating the third expression in
the list expression.

8. 10 - the result of applying the multiply procedure

1. ((lambda (x y) (lambda () (list x y))) 5 ‘gr ay)

2. (#<(xy) (lambda () (list x y))> 5gr ay)??

3. (#<(xy) (lambda () (list x y))> 5'gr ay)

4. (#<(xy) (lambda () (list x y))> 5 gray)

5. (lambda () (list 5 gray)) B

6. #<() (list5 qgr ay)> 4

“Note that we don’t have to actually use the formal parameter in the body of the procedure.
“Note that we didn’t start evaluating the body of the procedure until it was applied in a
procedure application list.

2Once again notice that the body of the procedure remains unevaluated until application.
3Here we just substituted the list being evaluated with the body of the applied procedure.
“Note that procedures can return procedures!

Page <& >
By Joshu&Cantrell
jic@cory.berkeley.edu

Big Procedure Example
Sometimes while evaluating scheme expressions can get gruesome (especially using the

substitution method). As an example which may stimulate your mind fully, I've chosen one of
these tedious examples. For this example, assume that the expression

(define (t f) (lambda (x) (f (f (f x)))))
was evaluated previously. This will bind the symibab

#<(f) (lambda (x) (f (f (f x))))>

Also assume that a procedure is bound to the syfibthat has one argument and adds one to
it. I'll represent this procedure Bi<1+>.

1. (((tt) 1+)0)

2. (((#<(f) (lambda (x) (f (f (f x))))> t) 1+) 0)
3. (((#<(f) (lambda (x) (f (f (f x))))>
#<(f) (lambda (x) (f (f (f x))))>) 1+ 0)

4. (((lambda (x) (#<(f) (lanbda (x) (f (f (f x))))>
(#<(f) (lanmbda (x) (f (f (f x))))>
(#<(f) (lanmbda (x) (f (f (f x))))>Xx))
1+)0) *
5. ((#<(x) (#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))> x)))> 1+) 0)
6. ((#<(x) (#<(f) (lambda (x) (f (f (f x)))>
(#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))> x)))> #<1+>) 0)
7. ((#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))> #<1+>))) 0)
8. ((#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>
(lambda (x) (#<1+> (#<1+> (#<1+>X))))))0)
9. ((#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>
#<(X) (#<14+> (#<1+> (#<1+> X)))>)) 0)
10. ((#<(f) (lambda (x) (f (f (f x))))>
(lambda (x) (#<(X) (#<1+> (#<1+> (#<1+> x)))>
(#<(X) (#<1+> (#<1+> (#<1+> Xx)))>
(#<(x) (#<1+> (#<1+> (#<1+> Xx)))>Xx)))))O0)
11 ((#<(f) (lambda (x) (f (f (f x))))>
#<(X) (#<(X) (#<1l+> (#<1+> (#H<1+> X))) >
(#<(x) (#<1l+> (#H<1+> (#<1+> X)) >
(#<(x) (#<1+> (#<1+> (#<1+> X)))>Xx)))>)O0)

I've italicized what was substituted in for the formal paramieserit would be easier to see.

By Joshu&Cantrell
jic@cory.berkeley.edu

12. ((lambda

13 (#<(x)

Page 6 >

() (#<(X) (#<(X) (#<1+> (#<1+> (#<1+> X)))>
(#<(X) (#<1l+> (#<1+> (#<1l+> X))) >
(#<(X) (#H<1l+> (#<1+> (#<1l+> X))) >
X)))>
(#<(X) (#<(x) (#<1+> (#<1l+> (#<1+> x)))>
(#<(X) (#H<1l+> (#<1+> (#<1l+> X))) >
(#<(X) (#H<1l+> (#<1+> (#<1l+> X))) >
xX)))>
(#<(X) (#<(X) (#<1l+> (#<1+> (#<1+> Xx)))>
(#<(X) (#<1l+> (#<1+> (#<1l+> X))) >
(#<(Xx) (#<1l+> (#<1+> (#<1+> x)))>

x)))>x)))) 0

(#<(X) (#<(X) (#<1+> (#<1l+> (#<1+>X)))>

(#<(X) (#<1+> (#<1l+> (#<1+> X)))>
(#<(X) (#H<1+> (#<1l+> (#<1+> X)))>
x)))>
(#<(X) (#<(x) (#<1l+> (#<1+> (#<1+>X)))>
(#<(X) (#H<1+> (#<1l+> (#<1+> X)))>
(#<(X) (#<1+> (#<1l+> (#<1+> X)))>
X))>
(#<(X) (#<(X) (#<1+> (#<1+> (#<1+>X)))>
(#<(X) (#<1+> (#<1l+> (#<1+>X)))>
(#<(X) (#<1+> (#<1l+> (#<1+> X)))>

X)))> X)))> 0)

14, (#<(X) (#<(X) (#<1+> (#<1l+> (#<1+> X)))>

(#<(X) (#<1+> (#<1+> (#<1+>X)))>

(#<(X) (#<1+> (#<1+> (#<1+> X)))>
x)))>

(#<(X) (#<(x) (#<1l+> (#<1+> (#<1+>X)))>

(#<(X) (#<1+> (#<1+> (#<1+> X)))>
(#<(X) (#<1+> (#<1+> (#<1+> X)))>
x)))>

(#<(X) (#<(X) (#<1+> (#<1+> (#<1+> x)))>

15. 27

(#<(X) (#<1+> (#<1+> (#<1+>X)))>
(#<(X) (#<1+> (#<1+> (#<1+>X)))>

x))>_ 0))

%I’m skipping the rest because you should get the idea by now. All you have to do is apply the
rest of the procedures in the correct order to get the correct answer.

