
Evaluating Scheme Expressions

What is a Scheme expression?
A Scheme expression is simply something that is made using Scheme’s forms1. These

expressions can then be evaluated to return a useful value. The skill of evaluating a Scheme
expression without an interpreter is extremely valuable. Without that ability, writing programs is
extremely difficult because you cannot tell what will produce the desired results.

Some Simple Expressions
The simplest expressions you should become an expert at evaluating are the non-list

forms. Self-evaluating expressions, such as numbers and boolean, simply evaluate to their own
values. A non-evaluated self-evaluating expression is simply the sameas the evaluated
expression's value. The symbol ⇒ means “evaluates to.”

� #T ⇒ #T (the boolean value #T)
� #F ⇒ #F (the boolean value #F)
� -13 ⇒ -13 (the numeric value -13)
� 4/5 ⇒ .8 or 4/5 (the numeric value 0.8 or rational numeric value 4/5ths2)
� +34.23 ⇒ 34.23 (the numeric value +34.23)

The other common expression you have to know about is the symbol. Symbols, which act
as identifiers, are normally bound to some other value. When you evaluate them, they are
replaced with the value to which they are bound. If they are not bound to a value when evaluated,
an error results. For the following examples, assume the symbol x is bound to the number 5, the
symbol y is bound to the unevaluated symbol gray, and the symbol fn is bound to the procedure
#<(x) (* x x)> 3.

� x ⇒ 5 (the number 5)
� y ⇒ gr ay (the unevaluated symbol gray)
� z ⇒ ERROR (this never truly finishes being evaluated because it results in an error)
� fn ⇒ #<(x) (* x x)> (the procedure #<(x) (* x x)>)

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

3 I choose to represent procedures as #<(P 1 P 2 ... Pn) E 1 E 2 ... E m>, where P1 through
Pn are the formal parameter symbols (aka, names or identifiers), and E1 through En are the
expressions that make up the body of the procedure. At this point you probably only know about
procedures with one expression in their body. This is fine since that is always a possibility. You
can have zero or more formal parameters, so n ≥ 0, and you must have at least one expression in
the body of a procedure, so m > 0. A procedure without formal parameters represented as
#<() E 1 E 2 ... E m>.

2 Whether it stays rational or not is dependant on the Scheme interpreter's implementation.

1 Look at my document on Normal Forms & Special Forms for an explanation on what forms are,
and examples of some forms in Scheme.

Another fairly simple expression to evaluate is a quoted expression. A quoted expression
is one that is not evaluated. If it were not quoted, it would be evaluated normally. There are
some funny cases where a quote’s result is specific to a particular interpreter, but I’ll just cover
the normal cases.

� `#T ⇒ #T (the boolean value #T)
� `+34.23 ⇒ +34.23 (the numeric value +34.23)
� `symbol ⇒ symbol (the unevaluated symbol value symbol)
� `(fn 23 0) ⇒(fn 23 0) (the unevaluated list expression (fn 23 0))
� `((fn 23) 0) ⇒((fn 23) 0) (the unevaluated list expression ((fn 23) 0))
� `(fn1 (fn2 23) 0) ⇒(fn1 (fn2 23) 0)

(the unevaluated list expression (fn1 (fn2 23) 0))

List Expressions
Without list expressions, Scheme wouldn’t be a LISPish language. This is because LISP

stands for LISt Processing. It shouldn’t be a surprise to you that understanding how to evaluate
these list expressions is crucial to being able to evaluate the majority of useful Scheme
expressions.

The most basic and important of these list expressions is the procedure application list4.
This is the normal form of a list expression in Scheme. Anything else is considered to be a special
form. The procedure application list is evaluated by first evaluating all of the expressions (items)
inside the list. Next, given that the first expression evaluated to a procedure, the procedure is
applied to the remaining elements in the list (the actual parameters). If the first expression did
not evaluate to a procedure, an error occurs. If the procedure has more or less formal
parameters than the number of provided actual parameters, an error occurs.

For the following examples the symbol x is bound to the number 5, the symbol y is bound
to the unevaluated symbol gray, and the symbol fn is bound to the procedure
#<(x) (* x x)> . The newly evaluated elements will be in bold and the unchanged elements
in normal type face. Any pre-evaluated value is underlined.

1. (* 4 2) - the expression to evaluate
2. (#<*> 4 2) - the first expression in the list, the symbol *, is evaluated5

3. (#<*> 4 2) - the second expression in the list, the number 4, is evaluated
4. (#<*> 4 2) - the third expression in the list, the number 2, is evaluated
5. 8 - with all expressions in the list evaluated, the procedure is applied

to the actual parameters 4 and 2, resulting in the list being
replaced by the number (value) 8.6

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

6 Not knowing what the body of the body of the multiplication procedure looks like, we must
jump from the application of the procedure to the answer. For procedures where we know what
the bodies look like, we do a substitution of the list with the body of the procedure.

5 When I don’t know what the argument list and body of a procedure look like, I’ll take the liberty
to represent the procedure as #<fn> where fn is the symbol to which the procedure is bound.

4 I made this term up not knowing what the standard term would be.

--
1. (y x) - the expression to evaluate
2. (gr ay x) - the first expression in the list, y, is evaluated
3. (gr ay 5) - the second expression in the list, x, is evaluated
4. ERROR - evaluation is terminated because the symbol gray is not a

procedure.
--

1. ((#<() fn>) x) - the expression to evaluate
2. (fn x) - the first expression in the list, (#<() fn>), is a list

expression, so we evaluate its first expression. Its
elements have already been evaluated, so we apply the
procedure to no actual parameters and replace the list
expression with the body of the procedure.

3. (#<(x) (* x x)> x) - the first expression in the list, fn, is evaluated
4. (#<(x) (* x x)> 5) - the second expression in the list, x, is evaluated
5. (* 5 5) - with all expressions in the list evaluated, the procedure

is applied to the actual parameter 5, and the list is
substituted with the body of the procedure with all
the x symbols in the procedure’s body replaced with
the value 5.7

6. (#<*> 5 5) - the first expression in the list, *, is evaluated
7. 25 - with all expressions in the list evaluated, the procedure is

applied to the actual parameters 5 and 5.

Define Special Form
One of the more important special forms needed to be evaluated is the define special form.

This special form allows us to bind symbols to values. The result of binding a symbol to a value is
mostly invisible to us at this point8. We just need to keep track of the scope9 of the symbol
(identifier) which is bound to the value. The returned result of evaluating a define is unspecified
(in other words, it can be “anything”). I’ll go over define when I cover the lambda special form.

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

9 This is done by first looking in the procedure where the symbol is being evaluated, if the symbol
wasn’t bound in that procedure, we look in the procedure that the currently being evaluated
procedure is defined, if not there, we continue up through the hierarchy of procedures until we
reach the global environment (where you type in commands to be interpreted). This is known as
lexical scope or alternatively static scope.

8 When we learn about environment diagrams, it’ll be more clear what binding a variable entails.

7 I’m using the substitution method because that’s what we know at this point. This is not how
Scheme actually evaluates expressions. It’s an accurate representation for functional procedures
only.

Lambda Special Form
The lambda special form is the constructor for producing data of type procedure. As

another one of the more powerful special forms in Scheme, this should be studied carefully.
Notice that a procedure is a first-class data type, so it can be used as an argument, be returned by
a procedure, be bound to a symbol, and be stored in a list. These are the same properties that
boolean, numerical, and unevaluated symbolic data have. Below are examples of how to evaluate
lambda.

1. (lambda () 5) - the expression to evaluate
2. #<() 5> - the result of evaluating the lambda expression, a procedure with

no arguments and a body of the expression 5. Note that the
body has not been evaluated yet.

1. ((lambda (x) (* 5 2)) 24) - the expression to evaluate
2. (#<(x) (* 5 2)> 24) - the result of evaluating the first expression in

the list expression. This was a lambda of one
formal parameter, x, and body (* 5 2)

3. (#<(x) (* 5 2)> 24) - the result of evaluating the second expression
in the list expression

4. (* 5 2) - the result of applying the procedure to the
actual parameter10

5. (#<*> 5 2) - the result of evaluating the first expression in
the list expression.11

6. (#<*> 5 2) - the result of evaluating the second expression
in the list expression.

7. (#<*> 5 2) - the result of evaluating the third expression in
the list expression.

8. 10 - the result of applying the multiply procedure

1. ((lambda (x y) (lambda () (list x y))) 5 ‘gr ay)
2. (#<(x y) (lambda () (list x y))> 5 ‘gr ay) 12

3. (#<(x y) (lambda () (list x y))> 5 ‘gr ay)
4. (#<(x y) (lambda () (list x y))> 5 gr ay)
5. (lambda () (list 5 gr ay)) 13

6. #<() (list 5 gr ay)> 14

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

14Note that procedures can return procedures!

13Here we just substituted the list being evaluated with the body of the applied procedure.

12Once again notice that the body of the procedure remains unevaluated until application.

11Note that we didn’t start evaluating the body of the procedure until it was applied in a
procedure application list.

10Note that we don’t have to actually use the formal parameter in the body of the procedure.

Big Procedure Example
Sometimes while evaluating scheme expressions can get gruesome (especially using the

substitution method). As an example which may stimulate your mind fully, I’ve chosen one of
these tedious examples. For this example, assume that the expression

(define (t f) (lambda (x) (f (f (f x)))))
was evaluated previously. This will bind the symbol t to

#<(f) (lambda (x) (f (f (f x))))>
Also assume that a procedure is bound to the symbol 1+ that has one argument and adds one to
it. I’ll represent this procedure by #<1+> .

1. (((t t) 1+) 0)
2. (((#<(f) (lambda (x) (f (f (f x))))> t) 1+) 0)
3. (((#<(f) (lambda (x) (f (f (f x))))>

#<(f) (lambda (x) (f (f (f x))))>) 1+ 0)
4. (((lambda (x) (#<(f) (lambda (x) (f (f (f x))))>

(#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))> x))))

1+) 0) 15

5. ((#<(x) (#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>

(#<(f) (lambda (x) (f (f (f x))))> x)))> 1+) 0)
6. ((#<(x) (#<(f) (lambda (x) (f (f (f x))))>

(#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))> x)))> #<1+>) 0)

7. ((#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>

(#<(f) (lambda (x) (f (f (f x))))> #<1+>))) 0)
8. ((#<(f) (lambda (x) (f (f (f x))))>

(#<(f) (lambda (x) (f (f (f x))))>
(lambda (x) (#<1+> (#<1+> (#<1+> x)))))) 0)

9. ((#<(f) (lambda (x) (f (f (f x))))>
(#<(f) (lambda (x) (f (f (f x))))>

#<(x) (#<1+> (#<1+> (#<1+> x)))>)) 0)
10. ((#<(f) (lambda (x) (f (f (f x))))>

(lambda (x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))> x))))) 0)
11. ((#<(f) (lambda (x) (f (f (f x))))>

#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))> x)))>) 0)

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

15I’ve italicized what was substituted in for the formal parameter f so it would be easier to see.

12. ((lambda (x) (#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))> x)))) 0)

13. (#<(x) (#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))> x)))> 0)

14. (#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))>

(#<(x) (#<(x) (#<1+> (#<1+> (#<1+> x)))>
(#<(x) (#<1+> (#<1+> (#<1+> x)))>

(#<(x) (#<1+> (#<1+> (#<1+> x)))>
x)))> 0)))

15. 2716

Page < 6 >
By Joshua Cantrell
jjc@cory.berkeley.edu

16I’m skipping the rest because you should get the idea by now. All you have to do is apply the
rest of the procedures in the correct order to get the correct answer.

