
Higher Order Procedures and Lexical Scope

Procedures As Data
In my document Evaluating Scheme Expressions, it's shown that the lambda special form

evaluates to data that's the procedure type. It's important to notice that this procedure data type
is a first-class data type. In fact, most Scheme data types are first-class! Numbers, boolean, and
symbols are also first-class data types. This means that numbers and procedures share some
common features:

� A symbol can be bound to it.
� It can be used as an actual parameter1 in a procedure call.
� Calling procedures can evaluate to it.2

� It can be used in compound data3.

Binding Symbols to Procedures
Already we have been binding symbols to procedures extensively. Up until this point,

every time we define a procedure, we bind a symbol to it4. This is because we haven't become
proficient at using the lambda special form to create procedures. For example, we want to define
a procedure that takes the square of a number:

1. (define (square x) (* x x))
2. (define square (lambda (x) (* x x)))
3. (define square #<(x) (* x x)>)
4. The symbol square is now bound to the procedure, #<(x) (* x x)>.

We don't hesitate in immediately binding the resultant procedure to the symbol square. Partially
because what if we didn't bind the procedure to a symbol at all?

1. (lambda (x) (* x x))
2. #<(x) (* x x)>

All we did was make a procedure and have the interpreter display the result! What a waste! This
is the same as typing in the number 5 just to have the interpreter reecho it back at you! That's
why we usually bind some symbol, like x, to the number 5, and bind some symbol, like square, to
the procedure #<(x) (* x x)>. The values aren't as useful echoing on the display as they are
being bound to symbol for future use.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

4 I'm talking to the general student populous in the course at the beginning of the 2nd week of
instruction.

3 Compound data is data made up of many basic types of data (like a compound molecule).
Procedures can be used to create compound data, and later we'll learn about the pair which can
also be used to create compound data.

2 In other words, the return value of a procedure can be one.

1 The arguments to the procedure which will be bound to the formal parameter symbols.

Not Binding Symbols to Procedure
You should recall that you don't have to bind a symbol to a number 5 to use it. Neither do

you have to bind a symbol to a procedure to use it. The following is an example:

1. (* 5 5)
2. (#<*> 5 5)
3. 25

The number 5 was used in the above expression, yet it wasn't bound to a symbol. The primitive
multiply procedure was bound to a symbol, but we can't make primitive procedures, those are
built-in. We can do the same with procedures:

1. ((lambda (x) (* x x)) 5)
2. (#<(x) (* x x)> 5)
3. (* 5 5)
4. (#<*> 5 5)
5. 25

Look mom! No symbols!5

Procedures as Actual Parameters
Symbols can be bound to procedures and numbers... Procedures and numbers can be used

as actual parameters! By looking at the example above, you can see that we did indeed pass a
numerical value as the actual parameter in a procedure call. But what about procedures? Here's a
really simple example6:

1. ((lambda (x) x) (lambda (x) (* x x)))
2. (#<(x) x> #<(x) (* x x)>)
3. #<(x) (* x x)>

It didn't do much, but we still passed the procedure as an actual parameter. Neat! A more useful
example might be:

1. ((lambda (op) (op 5 5)) *)
2. (#<(op) (op 5 5)> #<*>)
3. (#<*> 5 5)
4. (#<*> 5 5)
5. 25

You should start thinking about all the possible applications of this extremely useful discovery!

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

6 Don't worry about having the procedure call resulting in a procedure, that'll be covered next.

5 This is relating the phrase, "Look mom! No hands!" which is used when children become good
at riding bicycles and can finally remain balanced without using the handlebars. Like the child
who no longer needs handlebars to ride a bike, we no longer need symbols to use a procedure!

A Procedure as a Result of Calling a Procedure
Most of our procedures up to this point have been returning useful values. Our square

procedure returns a numerical value. What about a procedure returning a procedure value?
Couldn't that be useful? Here's a trivial example:

1. ((lambda () (lambda (x) (* x x))))
2. (#<() (lambda (x) (* x x))>)
3. (lambda (x) (* x x))
4. #<(x) (* x x)>

This certainly isn't the most exciting use of calling procedures to get procedures. But what about
having procedures build more complex procedures? We pass numbers in and get different
numbers out based on the previous numbers. Why can't we pass procedures in and get different
procedures out based on the previous procedures? Here's an example that takes two procedures
and returns a single procedure based on both of them:

1. ((lambda (p1 p2) (lambda (x) (p2 (p1 x)))) truncate integer?)
2. (#<(p1 p2) (lambda (x) (p2 (p1 x)))> #<truncate> #<integer?>)
3. (lambda (x) (#<integer?> (#<truncate> x)))
4. #<(x) (#<integer?> (#<truncate> x))>

Hmmm... Now this procedure can do something useful. First it applies the first procedure to a
given value and then it applies the second procedure to the result of the first application. Let's see
an example:

1. (#<(x) (#<integer?> (#<truncate> x))> 3.14)
2. (#<(x) (#<integer?> (#<truncate> x))> 3.14)
3. (#<integer?> (#<truncate> 3.14))
4. (#<integer?> 3.0)
5. #T

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

A Procedure in Compound Data
A procedure is a data type, right? Why not form compound data out of procedures? How

about the following procedure, won't it store data in a procedure?

(define (contain a b)
 (lambda (x)
 (if (= x 0) a
 b)))

Hmmm... Let's find out:

1. (contain 5 *)
2. (#<(a b) (lambda (x) (if (= x 0) a b))> 5 #<*>)
3. (lambda (x) (if (= x 0) 5 #<*>))
4. #<(x) (if (= x 0) 5 #<*>)>

Look! The number 5, and the procedure #<*> were stored in the procedure! Now we just need
to know how to get them out... What if we called the procedure with 0 as its actual parameter?

1. (#<(x) (if (= x 0) 5 #<*>)> 0)
2. (#<(x) (if (= x 0) 5 #<*>)> 0)
3. (if (= 0 0) 5 #<*>)
4. (if (#<=> 0 0) 5 #<*>)
5. (if #T 5 #<*>)
6. 5

EUREKA! It returned the stored 5! What if we called the procedure with something other than
the number 0?

1. (#<(x) (if (= x 0) 5 #<*>)> 1)
2. (#<(x) (if (= x 0) 5 #<*>)> 1)
3. (if (= 1 0) 5 #<*>)
4. (if (#<=> 1 0) 5 #<*>)
5. (if #F 5 #<*>)
6. #<*>

The procedure was returned! This shows how procedures can be used as storage devices!

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Lexical Scope7

Lexical scope describes the effective range of symbols bound inside and outside of
procedures. It's named lexical because you can tell the scope of the bindings just by looking at
the lexical organization of the code. As an example, the infamous square procedure:

To show scope, a bracket can be drawn at the start and end of the region under influence and the
symbols redefined within that scope can be drawn outside of the bracket as shown above. Notice
that the scope of the symbol x only applies within the body of the procedure.

A more complex example would be helpful in understanding how scope works. Here's an
example with procedures defined within procedures:

Notice how both the body of func8 and the body of the internal procedure summer, share the same
symbol a. They don't share the same symbol b since each one has its own definition of b. C is
only defined within the procedure summer. A procedure that does the same thing can be written
as follows:

Not binding a symbol to a procedure can be seen as having no effect on the scope of a procedure.
This procedure can also be rewritten using a let special form.

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

8 When I name a procedure by the symbol bound to it, I don't mean that the procedure is that
symbol, I'm merely trying to save space by referring to it by that name. Always remember I'm
talking about the procedure, not the symbol.

7 Lexical scope is also known as static scope.

(define (square x)
 (* x x))

Scope of the local parameter .x

Scope of the external symbols.

x

(define (func a b)
a (define (summer b c)
 (+ a b c))
 (summer (- a b) 5))

b b
c

func

summer

+
-

(define (func a b)
a
b b

c

func
+
-

 ((lambda (b c)
 (+ a b c))
 (- a b)
 5))

(define (func a b)
 (let ((b (- a b))
 (c 5))
 (+ a b c)))

a
b

b
c

func
+
-

