
Algorithm Efficiency

Why Do Algorithms Have to be Efficient?
Algorithms must be efficient in two respects, time and space. People have a finite

attention span and like answers fast (or reasonably fast), and sometimes speed is needed to
complete a job in a required amount of time. There is also a finite and limited amount of storage
space for algorithms to run under. An algorithm designed to solve a simple problem shouldn't
require a couple of megabytes to do so.

Often people talk about writing in assembly language, or some other low-level languge,
attempting to optimize the performance of a program. Sometimes this is done while overlooking
the possibility of a new choice of algorithm which may be faster and more efficient.1 A better
choice of an algorithm can have such a profound impact on a program that a program written in
an interpreter like Scheme could outrun a program written in a compiled language like assembly,
even though they may be performing the same operation, only doing it in different ways. This is
why understanding the relative speed of algorithms is crucial in writing efficient programs.

Orders of Growth
To help us understand the relative inefficiency of algorithms, we use big θ notation2. This

function represents the upper bounds of an algorithm's efficiency. In other words, the algorithm,
in the worse case situation, is no better than θ(f(n)), where R(n) is the worst case function and for
chosen constants K1 and K2, K1f(n) ≤ R(n) ≤ K2f(n). This shows that the function, f(n), only has
to grow as fast as R(n) and additional constants as well as constant scaling is unimportant. θ is
used for both space and time. As an example, we can examine the factorial procedure3:

(define (factorial n) (if (= n 0) 1 (+ 1 (factorial (- n 1)))))

1. (factorial 5)
2. (* 5 (factorial 4))

3. (* 5 (* 4 (factorial 3)))

4. (* 5 (* 4 (* 3 (factorial 2))))

5. (* 5 (* 4 (* 3 (* 2 (factorial 1)))))

6. (* 5 (* 4 (* 3 (* 2 (* 1 (factorial 0))))))

7. (* 5 (* 4 (* 3 (* 2 (* 1 1)))))

8. (* 5 (* 4 (* 3 (* 2 1))))

9. (* 5 (* 4 (* 3 2)))

10. (* 5 (* 4 6))
11. (* 5 24)
12. 120

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

3 Example borrowed and modified from SICP.

2 It's θ instead of O, because O(f(n)) is defined to be R(n) ≤ Kf(n). f(n) can grow faster than R(n)!
 θ sandwiches R(n), so f(n) has to grow at the same rate as R(n). Another function called Ω is
defined to be R(n) ≥ Kf(n), where f(n) can grow slower than R(n). θ is basically the function
where both R(n) = O(f(n)) and R(n) = Ω(f(n)).

1 Often this is done because of a lack of understanding about the differences between algorithms.

The bold print operators represent delayed operations that are waiting for the italicized function
to be called and return a result. The underlined values are those which need to be stored in
memory while being delayed.

Because the time of the procedure is directly related to the number input into the factorial
procedure, we choose our Order of Growth function f to be a function of it. Notice how we
asked for the factorial of 5, and it consisted of 6 calls of the factorial procedure, and 6 calls of the
* procedure. If we say that calling the factorial procedure takes k1 time and calling the *
procedure takes k2 time, then we can see that this procedure took about (k1 + k2) * 6 time, or
equivalently R(n) = (k1 + k2) * (n + 1) time. Our algorithm takes θ(n) time.

Similarly, the procedure call resulted in 2 values being stored, the * procedure and
corresponding number for each delay. With 5 delays, and letting s1 be the space taken up by the *
procedure and s2 be the space taken up by the number, about (s1 + s1) * 5 space, or equivalently
R(n) = (s1 + s1) * n space. Our algorithm takes θ(n) space.

Recursive Vs. Iterative Processes
So far we've defined many recursive procedures, most of which describe recursive

processes. Recursive processes are procedures that call themselves and must delay an operation,
leading to an increase in stored data. The processes examined in the previous section is a
recursive process. Iterative processes are procedures that call themselves but don't require any
operations to be delayed. Those types of procedures are known to be tail recursive.

Recursive procedures that take θ(n) time and space are collectively known as linear
recursive processes. The factorial procedure given above is a linear recursive process. Now let's
compare this to a linear iterative process:

(define (factorial n) (fact-iter 1 1 n))
(define (fact-iter product counter max-count)
 (if (> counter max-count) product
 (fact-iter (* counter product) (+ counter 1) (max-count)))

1. (factorial 5)
2. (fact-iter 1 1 5)
3. (fact-iter 1 2 5)
4. (fact-iter 2 3 5)
5. (fact-iter 6 4 5)
6. (fact-iter 24 5 5)
7. (fact-iter 120 6 5)
8. 120

In this procedure, we call fact-iter 6 times and * 6 times. Assuming similar times to the
other procedure, this procedure also takes R(n) = (k1 + k2) * (n + 1) time, or θ(n) time. The
difference comes in the space requirement. The linear recursive process kept on storing new
values; this one only needs to store 3 at all times, whose sizes are s1, s2, and s3 respectively. This
makes the process only take up R(n) = s1 + s2 + s3 space, or θ(1) space.

If you had your choice between the first algorithm and the second, which would you
choose? Overall, the second algorithm is the more efficient of the two in both time and space, so
it would be preferred.

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

Making Iterative Processes
One way to make iterative processes for mathematical functions is called "the technique of

defining an invariant quantity that remains unchanged from state to state."4 This is where we
have an answer we're trying to find and some equation that can be manipulated to produce an
answer without changing its total value. For example, for a factorial we can write:

answer = a * n!

We wish to keep the value of answer the same throughout this entire process. So, if we
decrease n by 1,

answer = (a * n) * (n - 1)!

we must redefine a to be the value of (a * n), and n to be the value of (n - 1).

 a' = a * n
n' = n - 1

answer = a' * n'!

Now all we have to do is determine what our base case will be, and write the function that solves
the problem using this process. The base case would be when n = 1, since that would require a to
be equal to the correct answer. The corresponding Scheme procedure would be:

(define (factorial n)
 (define (fact-iter a n)
 (if (<= n 1) a
 (fact-iter (* a n) (- n 1))))
 (fact-iter 1 n))

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

4 1st Edition SICP, pg. 43

