Page <1 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Algorithm Efficiency

Why Do Algorithms Have to be Efficient?

Algorithms must be efficient in two respects, time and space. People have a finite
attention span and like answers fast (or reasonably fast), and sometimes speed is needed to
complete a job in a required amount of time. There is alsota &nd limited amount of storage
space for algorithms to run under. An algorithm designed to solve a simplerprsimbuldn't
require a couple of megabytes to do so.

Often people talk about writing in assembly laage, or some other low-leMahguge
attempting taptimizethe performance of a program. Sometimes this is done while overlooking
the possibility of a new choice of algorithm which may be faster and more effickebetter
choice of an algorithm can have such a profound impact on a program that a program written in
an interpreter like Scheme could outrun a program written in a cearipihguage like assembly,
even though they may be performing the same operation, only doing it in different ways. This is
why understanding the relative speed of algorithms is crucial in writirggegffiprograms.

Ordersof Growth

To help us understand the relative inefficiency of algorithms, we ugertmtatiort. This
function represnts the uper bounds of an algorithm's efficiency. In other words, the algorithm,
in the worse case situation, is no better ®(@m)), whereR(n) is the worscase function and for
chosen constants; andK;, Kif(n) < R(n) < Ksf(n). This shows that the functioffn), only has
to grow as fast aR(n) and additional constants as well as constant scaling is unimpdtiznt.
used for both space and time. As an example, we can examfaettivéal proceduré

(define (factorial n) (if (=n0) 1 (+ 1 (factorial (- n 1)))))

1. (factorial b5)

2. (* 5 (factorial 4))

3. (* 5 (* 4 (factorial 3)))

4. (* 5 (* 4 (* 3 (factorial 2))))

5 (*5(*4 (*3 (*2 (factorial 1)))))
6. (*5 (* 4 (*3(*2 (*1 (factorial 0))))))
7o (25 (4 (23 (2 (x11)))))

8 (r5 (x4 (3 (r21))))

9. (* 5 (*4 (*3 2))

10.(*_5 (*_4 6))

11 (* 5 24)

12.120

! Often this is done because of a lack of understanding about the differences between algorithms.
2 It's 0 instead of0, becaus®©(f(n)) is defined to b&(n) < Kf(n). f(n) can gow faster thamk(n)!

0 sandwiche®(n), sof(n) has to grow at the samdeaasR(n). Another function calle@ is

defined to bdR(n) = Kf(n), wheref(n) can grow slower thaR(n). 8 is basically the function

where botR(n) = O(f(n)) andR(n) = Q(f(n)).

3 Example borrowed and modified froBiCP.

Page < >
By Joshu&Cantrell
jic@cory.berkeley.edu

Thebold print operators represent delayed operations that are waiting ftalitieed function
to be called and return a result. Tthlerlinedvalues are those which need to be stored in
memory while being delayed.

Because the time of the procedure is directly related to the number input ifaottral
procedure, we choose our Order of Growth funcfitmbe a function of it. Notice how we
asked for the fetorial of 5, and it consisted of 6 calls of flaetorial procedure, and 6 calls of the
* procedure. If we say that calling tfaetorial procedure takes, kime and calling th&
procedure takes; kime, then we can see that this procedure took abotitk * 6 time, or
equivalentlyR(n) = (k; + ko) * (n + 1) time. Our algorithm takéXn) time.

Similarly, the procedure call resulted in 2 values being stored, ghecedure and
corresponding number for each delay. With 5 delays, and lettreythe space taken up by the *
procedure and: $e the space taken up by the number, about$3 * 5 space, or equivalently
R(n) = (s + s) * n space. Our algorithm takéé) space.

Recursive Vs. Iterative Processes

So far we've defined many recursive procedures, most of which describe recursive
processesRecursive processese procedures that call themselves and must delay an operation,
leading to an increase in stored data. The processes examined in the previous section is a
recursive procesdterative processeare procedures that call themselves but don't require any
operations to be delayed. Those types of procedures are knowtatioréeursive

Recursive procedures that teél(@) time and space are collectively knowrliasar
recursiveprocesses. THactorial procedure given above is a linear recursive process. Now let's
compare this to Bnear iterativeprocess:

(define (factorial n) (fact-iter 1 1 n))
(define (fact-iter product counter nax-count)
(if (> counter max-count) product
(fact-iter (* counter product) (+ counter 1) (max-count)))

)

ol

(factorial
(fact-iter
(fact-iter
(fact-iter
(fact-iter
(fact-iter

(fact-iter 120 6 5)
120

N | |
w N [
a1 |o o

o
IN
ol

©ONOO A WNE
N
SN
Ul
Ul

In this procedure, we cdthct-iter 6 times and 6 times. Assuming similar times to the
other procedure, this procedure also tdR@g = (k, + ko) * (n + 1) time, oB(n) time. The
difference comes in the space requirement. The linear recursive prodess &&ping new
values; this one only needs to store 3 at all times, whose sizessarared srespectively. This
makes the process only takeR(n) = 5 + $ + $ space, 08(1) space.

If you had your choice between the first algorithm and the second, which would you
choose? Overall, the second algorithm is the more efficient of the two in both time and space, so
it would be preferred.

Page 3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Making Iterative Processes
One way to make iterative processes for mathematical functions is called "the technique of
defining aninvariant quantitythat remains unchanged from state to stafétiis is where we
have an answer we're trying to find and some equation that can be manipulatedde arodu
answer without changg its total value. For example, for a factorial we can write:

ansver=a*n

We wish to keep the value ahswerthe same throughout this entire process. So, if we
decreasa by 1,

answer=(a*n) *(n-1)
we must redefina to be the value of (a * n), amo be the value of (n - 1).

a=a*n
nN=n-1
answer=a' * n'

Now all we have to do is deteime what our base case will be, and write the function that solves
the problem using this process. The base case would bewehg&nsince that would requieeto
be equal to the correct answer. The corresponding Scheme procedure would be:

(define (factorial n)
(define (fact-iter a n)
(if (<=n1l a
(fact-iter (* an) (- n1))))
(fact-iter 1 n))

* 1st EditionSICP, pg. 43

