Page <1 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Representing Data Abstractions

What is a data abstraction?

A data abstraction is a condition where higher level integfare used to interact with a
lower level data structure. This can be related to the difference between a high-level language
versus a low-level language. The high-level language has many predefined data structures and
methods of interacting with them, whereas a low-level languagegords you the most basic
forms of data structures. The interfaces allow the high-level user to use the data structure
without needing to know or care about the underlying low-level data structures that make it up.
All the user needs to know is how the given interfaces work, and the assurance that they will
always work as specified with the correct data.

Representing a data abstraction.

Data abstractions are made so we don't have to worry about the low-level data structures
that make up our high-level data structure. Likewise, when representing these high-level data
structures by pictures or words, we don't want to draw it in respect to its low-level components.

An example of this picture abstraction would be the manufacturing of widgets for
industrial purposes. Widgets are created by combining multiple widgets to perform particular
tasks and functions. One basic gad is a cubic block that can be connected to other widgets on
any of its six sides. A pictorial representation is shown below.

The Cubic Widget
attachable on all sides

Now we want to build a new object using ttubic widget. Our goal is to makéeg
widget created by stacking 5 widgets on top of each other. The leg is also defined to have only
one attachable surface on the top. The low-level and high-level abstractions are given below.

attachable point
Sy P W

The Low-Level Structure The High-Level Abstract Structure
of the Leg Widget of the Leg Widget
attachable only on top attachable only on top

Page < >
By Joshu&Cantrell

jic@cory.berkeley.edu

We'd also like to build a surface using the cubic wtdg This surface would be 1 deep, 6
wide, and 8 long with four attachment points on itsdoafton the cubic widgets at (2,2), (7,2),
(2,5), and (7,5). The low-level and high level abstractions are given below.

v L

///////

T 777777
////////

The Low-Level Structure
of the Surface Widget
attachable on bottom of cubic widgets
(2,2), (7,2), (2,5), and (7,5)

The High-Level Abstract Structure
of the Surface Widget

attachable on bottom of cubic widgets
on shaded patches.

Both of these objects have high-level and low-levebpiat repregntations. Notice how
the high-level pictures show all the information we need to know about the objects, while the
low-level pictues look confusing and actually show us more than we really care about. The
low-level pictures may also tempt us to misuse our new widgets. Recall that the basic widget is
attachable to other widgets on all sides, whereas our new widgets only have particular attachment
points. If we tried attaching blocks to any location on our new widgets other than tHiedpeci
points, we would be violating our abstraction. Just looking at the low-level model seems to
suggest you can do it, and you can, but only if you use the new widgetparipi(the real
world, this can cause things to break). This is why we always shoutwydish new abstractions
by drawing pictorial representations that clearly show the characteristics of the abstraction rather
than the lower-level elements of the abstraction.

Using the proper attament points we can make a table out of the new widgets. Notice
how straight forward it is to build the table using the high-level abstract pictures, while far less
obvious given the low-level pictures.

e
///////

77

vy

/,

TILT LA
7T,

B B L T T [R

L/ i

The Low-Level Structure
of the Table Widget

The Mid-Level Abstract Structure
of the Table Widget

Page 3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

While we are on the topic of widget abstraction, you should also realize that we can make
a high-level abstract picture for the table widget. Notice how it's cleaner representing the table at
the highest level of abstraction. The table has no attachment points.

The High-Level Abstract Structure
of the Table Widget

Scheme's Basic Widgets

Common Characteristics

Scheme widgets (also known as data types) are similar to the widgets described above.
Some of them are not constructed to point to other Scheme widgets and amgeabtle. These
are sometimes calledoms. Others are constructed to point to other Scheme widgets and can be
changed by redirecting their pointers (called mutatiofhe function of pointers in Scheme is the
same as someone actively keeping an eye on someone else. If we asked that person who they
were watching, they could tell us. The person being watched mayawtkmo'spointing at
him urless he was explicitly told fmint back. Also notice that multiple people can all point at
the same person. Likewise, multiple Scheme widgets can point at a single Scheme widget.

L If mutation hasn't been covered yet, don't worry, just skip the parts you don't understand. Please
do not usenutabrsin class unless they have been formally introduced by the reading assignments
or lecture.

Page <4 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Symbols, Numbers, Strings, Boolean

Symbols, numbers, strings, andoleanvalues are a fetwnf Scheme's widgets that cannot
point at any other Scheme widget, and are unchangeable. They have specific values and are
considered to be atomic in nature. They normally appear as shown below. It isn't required that
you put them in boxes, but that helps give them the appearance of being one whole widget, rather
than many.

symbol | |list 12]|-13.4 "string" "go run"

The Symbols The Numbers The Strings The Boolean

The Pair

One of Scheme's widgets that has pointers is calbait a The pair has two parts that
point to other Scheme widgets. The first pointer is calleddahef the pair, and the second
pointer is called thedr of the pair. The picrial representation of a pag formed by making
two boxes and putting them together. The pictorial representation of the pointers are arrows
protruding from the center of their pesctive box.

/| The left box is called the car.
J \ The right box is called the cdr.

The arrows represent pointers.

The Pair

The Procedure

One of Scheme's most complex widgets is the procedure. Not only are they constructed
by one of Scheme's special forms, but they themselves are constructors of other special Scheme
widgets calledrames. Frames are beyond the scope of this document and will be covered at the
same time as environment diagrams. The pictorial representation of a procedure is formed by
putting two circles together (also known as a double bubble), each with a pointer pointing
outwards. One of the circles always points to the parameters and body of the procedure, while
the other points to an environment with the created frame

Wﬁ To Environment

P: parameter list
B: body

The Procedure

2 There are more of them, but these asedhes you'll probably see most often.
3 When ignoring the frames and émnments and just using substitution, it's only necessary to
worry about thegparameter list andbody of the procedure.

Page <& >
By Joshu&Cantrell
jic@cory.berkeley.edu

Constructors

Common Characteristics

In order to correctly create widgets, machines must be built to make them all compatible
with the same interfaces. The constructor is made to create the new data based on the blue prints
of the respective data type. If a constructor wasn't made, the data would have to be hand
assembled, which simply looks messy (imagine the task of assembling the table out of the cubic
widgets rather than ordering it out of a catalog) and is prone to error.

Numbers, Strings, Boolean

Numbers, strings, artliboleanare the simplest widgets to create in Scheme. You type
them in and they are created instantaneously. An unevaluated number is a number. An
unevaluated string is a string. An unevaluddedleans aboolean. When you evaluate one of
these, they have the unique property of evaluating to themselves (similar to reconstructing
themselves), so we call them self-evaluating.

12.3 0 12.3 '12.3 0O 123 (quote 12.3) 0 12.3
"abc" ["abc" "abc" 0O "abc" (Quote "abc™) O "abc"
O # HooO #t (quote #t) O #t
Symbols

Symbols are tricky widgets to make because you must insure that they are unevaluated.
An evaluated symbol is immediately replaced with the value it is bound to within the current
environmertt The unevalaed symbol stays a symbol, so that is how they are constructed.

symbol [0 whateversymbol is bound to in the current environment
'symbol [0 symbol
(quote symbol) 0 symbol

The Pair

The pair's constructor has the appearance of most user defined constructors. This is
because the constructor is a procedure rather than a special form. The symbol constructor
described above (the quote) is a special form, and the procedure constructor described below is a
special form. Th pair's constructor is bound to the symtmmis in the global environment

(cons <car> <cdr>) [O

<car> <cdr>

“ This return value gives it the appearance of being similar to a pair because it seems to point at
another widget, but it's not that simple of a relationship. We treat this occurrence as a special
case. The evaluation of a symbol more closely resembles the operataheofan for values

within thecurrent environment (a group of linked frames)

®> The global environment is where all Scheme primitive procedures and constants are defined.

Page 6 >
By Joshu&Cantrell
jic@cory.berkeley.edu

The Procedure

The procedure is constructed with a special form to specify the parameters and body. The
environment to which the procedure points is determined by when and where the procedure is
created during evaluatibinThe special form is detected by the first symbol in the evaluated list
beinglambda. <pl> through<pn> are all symbols making up the formal parameters, and
<body> is a list of unesluated expressions (with possidkfine expressions at the top).

(Iambda(<pl> <p2> <pn>) <b0dy>) [l To Environment

P:<pl><p2> ... <pn>
B: <body>

Selectors

Common Characteristics

Selectors are special devices used to retrieve other widgets from widgets. For Scheme
widgets, this can be done by returning a widget pointed to by the widget of the selector.
However, what a selector returns doesn't necessarily have to be immediately pointed to by the
widget, but the widget could be used to find or create the new widget. Allowing selectors to
create new widgets gives flexibility to the low-level structure of widgets because as long as the
selectors return the correct value, the underlying structure of the data doesn't matter. Selectors
are designed to retrieve a widget from a single widget, so they traditionally take as a parameter
the single widget and whatever extra information is needed to determine what is sought.

Symbols, Numbers, Strings, Boolean

Not all widgetsneed selectors. Symbalsnumbers, stringsandbooleandon't point to
any widgets and represent themselves. This makes them end-of-the-line type widgets because you
can use them to identify what to select in other widgets and have them returned by other widgets,
but they don't need information selected from themselves to be useful. They can be used at face
value.

The Pair

Most user defined selectors tend to be modeled similar to the pair's. The pair uses two
procedures, one that returns the widget inctireof the pair, and the other that returns th
widget in thecdr of the pair. The prockires are defined in the global environmentaasandcdr
respectively. They each take one parameter, a pair, because that's all they need to return the
correct values.

(car 0 <car> (cdr 0 <cdr>

<car> <cdr> <car> <cdr>

® When covering the environment diagram, the frame the procedure points to is discovered to be
the current environment of evaluation.

" See footnote 4 about why symbols don't point to widgets.

8 Strings actually havselectors for substringsbut these aren't necessary for the using them.

Page <7 >
By Joshu&Cantrell
jic@cory.berkeley.edu

The Proceduré

Procedures also have their own type of selector. Calling a procedure with specific actual
parameters can be thought as specifying what needs to be returned by the procedure. By the
general definition that I've given for selectrghe procedure would appear to have a type of
selector operation. This operation is built into the interpreter and is invoked whenever the
procedure is applied to actual parametapl> through<apn>.*

(To Frame <ap1> <ap2> L. <apn>) 0 <val ue>

P:<pl><p2> ... <pn>
B: <body>

Predicates

Common Characteristics

Predicates are useful when you want to find out some information about your widgets.
They always returbooleanvalue$®>. For Scheme predicates, there is a convention of appending
a? to the end of the representing symbols. This reminds us that the symbol is representing
something that is going to evake toa #t or #f value.

Equality Predicates

A common question about two objects are their equalitys Gécomes a complicated
issue in Scheme. They have three predicates for testing equality bound to the sgualbdls
egv?, andeg? in the global environmentEqual ? is not picky and if things look the same, it will
return #t2. Eqv? is pickier thanEqual?, andEq? is thepickiestof the three. The best place to
find out how these predicates detne equalityis by looking in théRevised Report on the
Algorithmic Language Scheme.

® Using the definition that I've given for selectors you could say procedures have selectors, but
I've never heard of calling a procedure as a type of selector before (eXglgssage Passing).

1 haven't checked to see if my definition is flawless, but it would seem to fit with the discussion
of selectors iIr8 CP.

“Remember that procedures can also maMgarameters.

2Since Scheme assumes anything not #f is #t, they sometimes return other values other than #t.
3None of the equality predicates are required to tell if two procedures look the same or are the
same, so their use with procedures is undefined.

Page 8 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Symbols, Numbers, Strings, Boolean, Pairs, Procedures

There are nmerous prediates for numbers and strings which can be found iRetised
Report on the Algorithmic Language Scheme, but the most popular predicates are probably the
ones that tell you what pg of widget you are dealing with. They consist of the name of the data
type followed by a question mark.

(symbol? <wi dget>) [#t if <widget> is a symbol, els#f
(number? <w dget>) [#t if <widget> is a number, elsgf
(string? <wi dget>) [#t if <widget> is a string, elséf
(boolean? <wi dget>) [0 #t if <widget> isboolean else#f
(pair? <wi dget>) [#t if <widget> is a pair, elsef
(procedure? <wi dget >) 0O #t if <widget> is a procedure, elsd

Constants

Common Characteristics

Constants are widgets that have a known structure. They are most often used as special
widgets that have special meanings for a particular type of widget. Symbols, numbers, strings,
andbooleanare all constants because they have values that will never change. There are no
constant pairs or procedures that can be counted on to always have the sathe value

Mutators

Common Characteristics

Mutatorsmodify the value of a particular widget. This usually entails redirecting a pointer
from pointing at one widget to another widget. For Schemtatorsthere is a convention of
appending ahto the end of the representing symbols

Symbols,Numbers, Strings, Boolean

Symbols,numbers, strings, armboleanlack mutators They are an example ohmutable
Scheme widgets. They don't have any pointers to change and are also constants as described
above.

“Someone told me that there is a null proceduré¢hat produces the empty list, but I've also
read that all expressions in parenthesis had to have at least one element to be without error
(Revised* Report on the Algorithmic Language Scheme, section 4.1.3. "Procedure Calls")

5The exclamation point, is usually pronounced "BANG!".

Page 9 >
By Joshu&Cantrell
jic@cory.berkeley.edu

The Pair

The pair is a mutable widgett has two pointers that can be shifted about to point at
different widgets. The primitive procedures that mutate the pointers are bound to the symbols
set-car! andset-cdr! in the global envimment. Set-car! changes the car pointer ased-cdr!
changes thedr pointer.

(set - car! <wi dget>) [

<car> <cdr> <wi dget> <cdr>
(set-cdr! <wi dget>) [

<car> <cdr> <car> <wi dget >

The Procedure
A procedure's formal parameters and body, and the pointer to the frame cannot be
mutated, which means that the procedure cannot be directly muidtegrocedure has mutable

state by changing the values in the environment to which it points. In fact anything that changes a

value bound to a symbol within a procedure's connected environment will change the effective
data set the procedure uses (because a procedure doesn't have to use all of the symbols in its
environment, there is a possibility this won't change how it evaluates).

This state is changed by mutating the environment which is done through eittiefirtae
or set! special forms. Thdefine special form only binds arré-bindssymbols in the current
frame. It also has many limitations on where it can be used in your pragiEimeset! special
form onlyre-bindssymbols in the current environment. It can be used anyplace a normal
expression can be used. Because I'm not covering the frame widgets, | can't show a pictorial
example of hovdefine andset! work.

6 The limitations of the define special form seem more restrictive than necessary, yet they are
there(Revised* Report on the Algorithmic Language Scheme, Section 5.2. "Definitions").

Page <10 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Scheme List’ Example

The Abstract List

When conng up with a higher level abstraction, first you must make a picture to
represent your new data type (widget). Lists consist of two pdeadaand atail. Thehead
contains a piece of datum and thi is asulist containing more data. Aempty list is a list
without any data osublists Now let's draw our pictuté

head | tail | —hasanempty list tail.
N a
000,020

An Example of a List

After drawing our picture, we are now ready to make the list widget out of Scheme's basic
widgets. We will be developing the list by imitating the different interfaces described above.

The Constructor

There needs to be a way to create our list. Scheme makes this easy by providing a
primitive procedure to do this for us. It takes any number of arguments, so we can make lists of
any sizes. This provided constructor is bound to the syh#bal the global enviroment. The
Scheme list is constructed using the pair widget because it has two pointers, one to point at the
datum, and the other at the tail. The last tail in the()isis a Scheme invention called tapty
list. It's declared to not be a pair, but still a list. It's not a symbobookearnvalue.

head | tail |
| | | | 0

A A A A D

a L c i e

The Lower-Level Structor of a List

(list <d1> <d2> ... <dn>) O

<d1><d2> <dn>

The normal definition of a list is a sequence of elements. Scheme uses a special type of list
called a linked-list. Lists do not have to be linked so thalhé¢he points to thdail.

8The pictures | draw are not special, they are only examples of im&gine the data types

could be drawn. Notice that | don't point at the datum widgets using pointers, but put them inside
theheads. This is to make the diagram simpler, not because it is the best representation.

Page <11>
By Joshu&Cantrell
jic@cory.berkeley.edu

The Constants
The constant for lists is treenpty list. It cannot be changed and is always the same
widget that represents teapty list. | choose to draw an empty list as a circle without any
datum pointer or tail pointer, because then it resembles a list with the properties of an empty list.

The Selectors

In order to get at the datum and tail at the head of the list, we need selectors. Scheme's
implementation uses crude selectors, naroa&iyandcdr. The selectocar, which normally gets
the left pointer in a pair, now returns the datum, @rgdwhich normally gets the right pointer in
a pair, now returns the tail. This choice of using the low-level selectors to interface with a list,
rather than making high-level selectors, is known as a data abstraction violation. To make a list
more kosher, | suggest defining new selectors in the global environmrsedatum andlist-tail.

(define (list-datum list) (car list))

(define (list-tail list) (cdr list))
(list-datum 0 <di>
<d1><d2> <dn>
(list-tail @9@—) 9@ O @—) 9@
<d1><d2> <dn> <d2> <dn>

The Predicates

Scheme provides two general predicates for use with lists. They are bound to the symbols
list? andnull?. List? returns #t if the given widget is a lighlull? returns #t if the given widget is
an empty list.

(list? <wi dget>) O #t Iif <widget> is a list, elsetf
(null? <wi dget>) 0O #t if <widget> is an empty list, elsgf

The Mutators

Themutatos for lists areset-car! andset-cdr!, yet another data abstraction violation. To
remedy this, | suggest defining more abstragtatos in the global environment (just as we did
with the selectord)st-set-datum! andlist-set-tail!.

(define (list-set-datum! list widget) (set-car! list widget))

(define (list-set-tail! list widget) (set- cdr! list widget))
(list-set-datum! <wi dget >) 0O
<d1><d2> <dn> <wi dget > <d2> <dn>

(list-set-tail W@ @_)9@ - w@

<d1><d2> <dn> <al> <ak> <d1><al> <ak>

Page <12 >
By Joshu&Cantrell

jic@cory.berkeley.edu

General Tree Example

The Abstract Tree

Because we are developing a higher level abstraction, we must once again make a picture
to represent our new data type (widget). Trees consist of nodes connected together in a
hierarchical fashion with garent node directly abovehildren nodes. At the very top of the tree
is one node, called threot which has no parents. At the bottom of the tree are nodes without
children calledeaves®. Theheight of a tree is the longest path of nodes from the root to a leaf.
Sblings are nodes who share the same parent node. Aatbdécan be reachedm following
a path starting at nodegoing to the root is called amcestor of b. A nodea that can be
reached from following a path start at ndxgoing to a leaf is calleddescendant of b. A tree is
made up obubtrees that are connected to the roddow let's draw our picture.

height
is4

ﬁd’]” dren of is tﬁentof—‘

An Example of a Tree

The Constructor

After drawing our picture, we are now ready to make a tree widget out of Scheme's basic
widgets. Looking at the picture, we see that the tree is basically built from nodes which all share
the same characteristics of having parents and children. To make our tree simpichden
to design it so the nodes only have pointers to their children, naitg#drent. Each node also
must point to a datum widget. What would allow us to have one pointer to the datum and
multiple pointers for all the possible children? One possibdity pair who's car points at the
datum and whosedr points at a list of children.

. list of children md&sI
I |

node\

| —T>

<datum> <c1l><c2> <cn>

The Lower-Level Structor of a Tree Node

¥Choosing to mix normal trees and family trees makes nomenclature entertaining.

Page <13>
By Joshu&Cantrell

jic@cory.berkeley.edu

Notice how | purposly avoided drawing the list as a bunch of pairs. Not only would that
representation have been a data abstraction violation since | said | was going to use a list, but it
would have looked like | was using a bunch of pairs instead of a list. Now it should be fairly
straight forward to write the constructor for a tee

(define (make-tree datum . children)
(cons datum children))

Another constructor could take the datum and a list of children. This may seem like a lazy
way of making a constructor because we just put the list in the pair, but notice that if we decided
to use something other than a list, we coukllgaonvert that list into something else. We are
also not violating any data abstractions because we explicitly tell the user that itliake a
children nodes as input and not something different.

(define (make-tree2 datum list-of-children)
(cons datum list-of-children))

The Constants

We need a constant to represengeapty tree, just like we needed a constant for lists
which represented an empty list. Once we define what this constant is, it should never change,
and it'll always represent an empty tree. A picture of an empty tree should not be the same as a
list because a list is not a tree. To differentiate between the two, | suggest that an empty tree be
drawn as a circle with a "T" drawn in it. An empty tree node cannot be a leaf because it doesn't
perform the function of a real node having a datum.

@

The Abstract Empty Tree Node

(define empty-tree 'the-empty-tree)

2| use the "." in the formal parameter list to indicate that | have a variable number of values after
that point. All of those values are placed in a list which works nicely with our lower-level data
structure.

Page <14 >
By Joshu&Cantrell
jic@cory.berkeley.edu

The Selectors

There are various selectors we can write for our tree. One is for getting the datum and the
other the children or a child. I'll define three selectnes-datum, tree-children-list, and
tree-child. Tree-datum will return the data of the current tree's root no@lieee-children-list will
return a list of all the children of current tree's root notiee-child returns a child of the tree's
root node given an index number which searches the children going from left to right. It also
returns an empty tree node if no child is found at the given index.

(define (tree-datum tree) (car tree))

(define (tree-children-list tree) (cdr tree))
(define (tree-child tree index)
(define (index-list i list-of-trees)
(cond ((null? list-of-trees) empty-tree)
((= i 0) (list-datum list-of-trees))
(else (index-list (- i 1) (list-tail list-of-trees)))))

(index-list index (tree-children-list tree)))

The Predicates

There are also a few predicates needed to help finish the abstract interface to our tree
widget. We can maketeee? predicate which parallels with Schemest? predicate, and an
empty-tree? predicate which parallels with Schem&# ? predicate. Thé&ee? predicate should
make sure the structure of the widget is the same as a tree. Ifitisn't thenit's not atree. The
empty-tree? just checks to see if the widget is the empty tree constant.

(define (tree? widget)
(define (list-of-trees? list-of-widgets)
(if (null? list-of-widgets) #t
(and (tree? (list-datum list-of-widgets))
(list-of-trees? (list-tail list-of-widgets)))))
(cond ((empty-tree? widget) #t)

((not (pair? widget)) #f)
((not (list? (cdr widget))) #f)
(else (list-of-trees? (cdr widget)))))

(define (empty-tree? widget) (equal? widget empty-tree))

The Mutators

Now we want ways to mutate the parts of our tree. To keemuitetorssimple, |
suggest making mutatorthat makes the node point to a different datum widget, and one to
change the children. These will closely resemble the construdimesdatum! will change the
datum of the nodeTree-children! will accept a variable number of children as an argument and
change the children to beode given.Tree-children-list! will accept a list of children and make
all of the children in the node be those in the list.

(define (tree-datum! tree datum) (set-car! tree datum))
(define (tree-children! tree . children)

(set-cdr! tree children))
(define (tree-children-list! tree list-of-children)

(set-cdr! tree list-of-children))

Page <15>
By Joshu&Cantrell

jic@cory.berkeley.edu

The Tree Hierarchy

What Trees Represent

Trees are commonly used to represent a hierarchy of information. The hierarchy is often
used to take advantage of classifying items by starting at a base followed byleaeteing
more specific in meaning than its parent. An example would be the classification of living
organisms. Starting at the top you have the broad class of living organisms. As you move down,
the organisms are continuously subdivided into more and more groups.

Another type of hierarchy resembles something that's in a particular order in respect to the
root node. Two examples of this are Heap andbinary search trees. Theheap is composed of
each parent of the tree having a number of greater value that its children. The parent nodes of a
binary search tree all having descendants witlatumsdess in value thaits own datundown its
left branch, and greater in value than its own datum down its right branch.

An Example of a Heap An Example of a
Binary Search Tree

Trees can also be used to represent the order of operations. For examme,ldboiy
could be used to perform a serieanthmaticoperations to simplify a matmatical expression:

An Example of the
Math Expression
(+(* (- 52) 37 (/ (+61) (+84))

Page <16 >
By Joshu&Cantrell

jic@cory.berkeley.edu

Searching Trees

There are two common methods of searching treeslgfitle-first search and the
breadth-first search. Depth-first search simply checks the current node and if it doesn't match the
search requirements, chooses to descend down a branch to continue the search. If all the nodes ir
that branch have beentewsted, the search continues down a new branch until all of the branches
have been searched. When nothing has been founel treth the seardhiles.

An Example of
Depth First Search

for 11
14 - 10 - 9 - 5 - 2 - 3 - 7 - 13 - 11

Breadth-first search seaehall nodes at a particulaightin the tree before continuing on
to a lower depth.

An Example of
Breadth First Search

for 11
14 - 10 - 13 - 9 - 3 - 7 - 11

Page <17 >
By Joshu&Cantrell

jic@cory.berkeley.edu

Operating on Trees

There are three general orders of operating on trpesorder, postorder, andinorder.

These describe the order in which the nodes are visited and operated upomnleJdrgtions are
as follows:

Preorder - Works on general trees.
1. Operate on root node.
2. Operate orsubtrees.

An Example of

Preorder Operation
14 - 10 - 9-5-2-3-7-13-11-6-1- 12 - 8 - 4

Postorder - Works on general trees.
1. Operate orsubtrees
2. Operate on root node.

An Example of

Postorder Operation
5-2-9-3-7-10-6-1-11- 8- 4 - 12 - 13 - 14

Page <18 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Inorder - Works on binary trees.
1. Operate on lefsubtree

2. Operate on root node.

3. Operate on rightubtree

An Example of

Inorder Operation
1-2-3-4-5-6-8-9-10- 11 - 12 - 13 - 14 - 15

As an example of each operation, I'll collect the node values into a list using each of the
orders. Notice how | explicitly make sure the operations are done in the correct order by using
let special forms.

(define (append-lists lists)
(if (null? lists) '()
(append (car lists) (append-lists (cdr lists)))))

(define (pr eorder tree)
(if (empty-tree? tree) ()
(let ((root (list (tree-datum tree))))
(let ((subtrees (map preorder (tree-children-list tree))))
(append root (append-lists subtrees))))))

(define (post or der tree)
(if (empty-tree? tree) '()

(let ((subtrees (map post order (tree-children-list tree))))
(let ((root (list (tree-datum tree))))
(append (append-lists subtrees) root))))

(define (i norder binary-tree)
(if (empty-tree? tree) ()

(let ((left (inorder (tree-child binary-tree))))
(let ((root (list (tree-datum tree))))
(let ((right (inorder (tree-child binary-tree))))

(append left root right)))))

Page <19 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Data Abstraction Techniques

Manifest Data Types

Data has ananifest type if its type can be clearly known and tested. Primitivee8eh
widgets have manifest types. These are numbeddean strings, symbols, procedures, and
pairs. The other coplex data types that we created, lists and trees, do not have manifest types,
because they magppear to be the correct type, but we don't know for certain.

A method of creating our own manifest types is through data tagging. By tagging each
type of data with a name, we can easily distinguish between types without accidentally confusing
two types thatook the same. To help us work with tags, we can create constructors to wrap
data and selectors to obtain the tags anal’dat

Constructor:
(define (attach-type type contents)

(cons type contents))

Selectors:
(define (type datum)
(if (pair? datum) (car datum) 'primitive)

(define (contents datum)
(if (pair? datum) (cdr datum) datum)

To hep this discussion of tgs, I'll redefine the tree constructor and predicate so that it
becomes a manifest type, and make a new type of tree, a binary tree.

Binary Tree Constructor:
(define (make-btree datum left right)
(attach-type ‘btree (list datum left right)))

Binary Tree Constant:
(define empty-btree 'the-empty-btree)

Binary Tree Selectors:

(define (btree-datum btree) (car btree))
(define (btree-left btree) (cadr btree))
(define (btree-right btree) (caddr btree))
(define (btree- children-list btree) (cdr btree))
(define (btree- child btree index)
(cond ((=index 0) (btree-left btree))

((=index 1) (btree-right btree))

(else empty-btree)))
Binary Tree Predicates:
(define (btree? widget) (eq? (type widget) 'btree))
(define (empty-btree? widget) (equal? widget empty-btree))

“l've chosen to return typeimitive for non-tagged types to make numbémpleanstrings, and
symbols easy to useith this new paradigmSICPchose a better, more complex alternative.

Page <0 >
By Joshu&Cantrell
jic@cory.berkeley.edu

General Tree Constructor:
(define (make-tree datum . children)
(attach-type 'tree (cons datum children)))

General Tree Predicates:
(define (tree? widget) (eq? (type widget) 'tree))
(define (emp ty-tree? widget) (equal? widget empty-tree))

Explicit Dispatch

Explicit dispatch is where procedures are made to determine what type is being used and
act accordingly. We have two types of trees, both with different types of selectors. It would be
nice to have a general set of tools to treat both of them same. Here's how that would be done
using explicit dispatch:

(define (get-datum datum)
(let ((widget (contents datum)))
(cond ((tree? datum) (tree-datum widget))
((btree? datum) (btree-datum widget)))))

(define (get-children-list datum)
(let ((widget (contents datum)))
(cond ((tree? datum) (tree-chil dren-list widget))
((btree? datum) (btree-children-list widget)))))

(define (get-child datum index)
(let ((widget (contents datum)))
(cond ((tree? datum) (tree-child widget index))
((btree? datum) (btree-child widget index)))))

The main features of explicit dispatch are given below:
* Operators check type.

* Operators determihow to evaluate correctly.

* Code forced to be grouped by operator.

Data-Directed Programming

Data-directed is where the operators are stored in a 2-Dimensional table, organized by
type, and a generic application procedure can coyrelsiose and carry out the proper action.
For storing information in the table, we are introduced to two new Berkeley Scheme procedures
put andget. Putis anutator,and get is a selector. Their prototypes are as follows

(put <type> <op> <itenmr) 0O An unspecified value.
(get <type> <op>) [0 Theitemstored at the given location in the table.

Page 1>
By Joshu&Cantrell
jic@cory.berkeley.edu

To apply the operators, we need to make a generic application procedure. It must take
the operator, determine the type of datum being used, and apply the correct procedure. A simple
version would be written as follows:

(define (apply-generic op . data)
(let ((widget-types (map type data))
(widgets (map contents data)))
(let ((proc (get widget-types op)))
(apply proc widgets))))

Theapply-generic procedure is nde to work with procedures of multiple parametets. |
handles this by using a list of the parameter types as thptable dta type of the operator. The
apply procedure used in the definition simply applies the given procedure to the list of actual
parameters. Now all we need to do is put the procedures in the correct locations within the
table:

(put '(tree) 'get-datum tree-datum)
(put '(tree) 'get-children-list tree-children-list)
(put '(tree primitive) 'get-child tree-child)

(put ' (btree) 'get-datum btree-datum)
(put ' (btree) 'get-children-list btree-children-list)
(put ‘'(btree primitive) 'get-child btree-child)

A curiousityabout data-directed programming is that you aren't forced to group the definitions in
any particular way. Above they are grouped by type, but we could also group them bgrsperat

(put '(tree) 'get-datum tree-datum)
(put ' (btree) 'get-datum btree-datum)

(put '(tree) 'get-children-list tree-children-list)
(put ' (btree) 'get-children-list btree-children-list)

(put '(tree primitive) 'get-child tree-child)
(put ‘'(btree primitive) 'get-child btree-child)

The main features of data-directed programming are given below:

* Data determines type.

* Table used to choose correct operator based on actaaigiar types
* Code easily organized by type or operator.

“Also known as arguments.

Page <2 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Message Passing

Message passing is where the operators are built into the data itself. The easiest way to
represent message passing data types is by using procedures. To make the implementation more
closely related t&ICP,I'll also introduce a new way of making data have manifest type. First
we'll change the constructors to create data which takes mes8ages.

General Tree Constructor:
(define (make-tree datum . children)
(lambda (op . params)
(cond ((eq ? op 'type) 'tree)

((eg? op 'empty?) #f)
((eg? op 'get-datum) datum)
((eg? op 'get-children-list) children)
((eg? op 'get-child)

(let ((index (car params)))
(if (>= index (length children))
empty-tree
(list-ref children (car params))))))))

Binary Tree Constructor:
(define (make-btree datum left right)
(lambda (op . params)
(cond ((eq? op 'type) 'btree)
((eg? op 'empty?) #f)
((eg? op 'get-datum) datum)
((eg? op 'get-children-list) (list left right))
((eg? op 'get-child)
(let ((index (car params)))
(cond ((=index 0) left)
((= index 1) right)
(else empty-btree)))))))

Now we should also redefine the predicates. At the same time, defining constants which
are procedures may be more helpful than the plain symbolic one.

General Tree Constant:
(define (empty-tree op)
(cond ((eq ? op 'type) 'tree)
((eq? op 'empty?) #1)))

General Tree Predicates:
(define (tree? widget)
(and (procedure? widget) (eq? (widget 'type) 'tree)))

(define (emp ty-tree? widget)
(and (procedure? widget) (widget 'empty?)))

“I've chosen to udest-ref andlength since they are Scheme primitives with the following
prototypes:

(list-ref <list> <k>) 0O returns theth element irfist

(length <list>) O the number of elements lirst

Page <3 >
By Joshu&Cantrell
jic@cory.berkeley.edu

Binary Tree Constant:
(define (empty-btree op)
(cond ((eq ? op 'type) 'btree)
((eq? op 'empty?) #1)))

Binary Tree Predicates:
(define (btree? widget)
(and (procedure? widget) (eq? (widget 'type) 'btree)))

(define (empty-btree? widget)
(and (procedure? widget) (widget 'empty?)))

As a way to show that message passing data can be interfaced with similarly to the
data-directed style, thapply-generic procedure can be redefined as:

(define (apply-generic op . data)

(let ((wi dget (car data))
(params (cdr data)))
(apply widget (append (list widget) params))))

The main features of message passing are given below:

* Data determines type.

* Data has the correct operator and applies it for a correct result.
* Code forced to be grouped by type.

