
Representing Data Abstractions

What is a data abstraction?
A data abstraction is a condition where higher level interfaces are used to interact with a

lower level data structure.  This can be related to the difference between a high-level language
versus a low-level language.  The high-level language has many predefined data structures and
methods of interacting with them, whereas a low-level language only gives you the most basic
forms of data structures.  The interfaces allow the high-level user to use the data structure
without needing to know or care about the underlying low-level data structures that make it up.
All the user needs to know is how the given interfaces work, and the assurance that they will
always work as specified with the correct data.

Representing a data abstraction.
Data abstractions are made so we don't have to worry about the low-level data structures

that make up our high-level data structure.  Likewise, when representing these high-level data
structures by pictures or words, we don't want to draw it in respect to its low-level components.

An example of this picture abstraction would be the manufacturing of widgets for
industrial purposes.  Widgets are created by combining multiple widgets to perform particular
tasks and functions.  One basic widget is a cubic block that can be connected to other widgets on
any of its six sides.  A pictorial representation is shown below.

Now we want to build a new object using the cubic widget.  Our goal is to make a leg
widget created by stacking 5 widgets on top of each other.  The leg is also defined to have only
one attachable surface on the top.  The low-level and high-level abstractions are given below.
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The Cubic Widget
attachable on all sides

The Low-Level Structure

attachable only on top
of the Leg Widget

The High-Level Abstract Structure

attachable only on top
of the Leg Widget

attachable point



We'd also like to build a surface using the cubic widgets.  This surface would be 1 deep, 6
wide, and 8 long with four attachment points on its bottom, on the cubic widgets at (2,2), (7,2),
(2,5), and (7,5).  The low-level and high level abstractions are given below.

Both of these objects have high-level and low-level pictorial representations.  Notice how
the high-level pictures show all the information we need to know about the objects, while the
low-level pictures look confusing and actually show us more than we really care about.  The
low-level pictures may also tempt us to misuse our new widgets.  Recall that the basic widget is
attachable to other widgets on all sides, whereas our new widgets only have particular attachment
points.  If we tried attaching blocks to any location on our new widgets other than the specified
points, we would be violating our abstraction.  Just looking at the low-level model seems to
suggest you can do it, and you can, but only if you use the new widgets improperly (in the real
world, this can cause things to break).  This is why we always should distinguish new abstractions
by drawing pictorial representations that clearly show the characteristics of the abstraction rather
than the lower-level elements of the abstraction.

Using the proper attachment points we can make a table out of the new widgets.  Notice
how straight forward it is to build the table using the high-level abstract pictures, while far less
obvious given the low-level pictures.
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of the Surface Widget
attachable on bottom of cubic widgets

(2,2), (7,2), (2,5), and (7,5)

The Low-Level Structure The High-Level Abstract Structure
of the Surface Widget

attachable on bottom of cubic widgets
on shaded patches.

of the Table Widget
The Low-Level Structure The Mid-Level Abstract Structure

of the Table Widget



While we are on the topic of widget abstraction, you should also realize that we can make
a high-level abstract picture for the table widget.  Notice how it's cleaner representing the table at
the highest level of abstraction.  The table has no attachment points.

Scheme's Basic Widgets

Common Characteristics
Scheme widgets (also known as data types) are similar to the widgets described above.

Some of them are not constructed to point to other Scheme widgets and are unchangeable.  These
are sometimes called atoms.  Others are constructed to point to other Scheme widgets and can be
changed by redirecting their pointers (called mutation)1.  The function of pointers in Scheme is the
same as someone actively keeping an eye on someone else.  If we asked that person who they
were watching, they could tell us.  The person being watched may not know who's pointing at
him unless he was explicitly told to point back.  Also notice that multiple people can all point at
the same person.  Likewise, multiple Scheme widgets can point at a single Scheme widget.
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1 If mutation hasn't been covered yet, don't worry, just skip the parts you don't understand.  Please
do not use mutators in class unless they have been formally introduced by the reading assignments
or lecture.

The High-Level Abstract Structure
of the Table Widget



Symbols, Numbers, Strings, Boolean
Symbols, numbers, strings, and boolean values are a few2 of Scheme's widgets that cannot

point at any other Scheme widget, and are unchangeable.  They have specific values and are
considered to be atomic in nature.  They normally appear as shown below.  It isn't required that
you put them in boxes, but that helps give them the appearance of being one whole widget, rather
than many.

The Pair
One of Scheme's widgets that has pointers is called a pair.  The pair has two parts that

point to other Scheme widgets.  The first pointer is called the car of the pair, and the second
pointer is called the cdr of the pair.  The pictorial representation of a pair is formed by making
two boxes and putting them together.  The pictorial representation of the pointers are arrows
protruding from the center of their respective box.

The Procedure
One of Scheme's most complex widgets is the procedure.  Not only are they constructed

by one of Scheme's special forms, but they themselves are constructors of other special Scheme
widgets called frames.  Frames are beyond the scope of this document and will be covered at the
same time as environment diagrams.  The pictorial representation of a procedure is formed by
putting two circles together (also known as a double bubble), each with a pointer pointing
outwards.  One of the circles always points to the parameters and body of the procedure, while
the other points to an environment with the created frame3.
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3 When ignoring the frames and environments, and just using substitution, it's only necessary to
worry about the parameter list and body of the procedure.

2 There are more of them, but these are the ones you'll probably see most often.

symbol list

The Symbols

12 -13.4

The Numbers

"string" "go run"

The Strings

#t #f

The Boolean

The Pair

The left box is called the car.
The right box is called the cdr.
The arrows represent pointers.

The Procedure

To Environment

P:
B:

parameter list
body



Constructors

Common Characteristics
In order to correctly create widgets, machines must be built to make them all compatible

with the same interfaces.  The constructor is made to create the new data based on the blue prints
of the respective data type.  If a constructor wasn't made, the data would have to be hand
assembled, which simply looks messy (imagine the task of assembling the table out of the cubic
widgets rather than ordering it out of a catalog) and is prone to error.

Numbers, Strings, Boolean
Numbers, strings, and boolean are the simplest widgets to create in Scheme.  You type

them in and they are created instantaneously.  An unevaluated number is a number.  An
unevaluated string is a string.  An unevaluated boolean is a boolean.  When you evaluate one of
these, they have the unique property of evaluating to themselves (similar to reconstructing
themselves), so we call them self-evaluating.

12.3 ⇒ 12.3 '12.3 ⇒ 12.3 (quote 12.3) ⇒ 12.3
"abc"  ⇒ "abc" '"abc"  ⇒ "abc" (quote "abc")  ⇒ " abc"
#t ⇒ #t '#t ⇒ #t (quote #t) ⇒ #t

Symbols
Symbols are tricky widgets to make because you must insure that they are unevaluated.

An evaluated symbol is immediately replaced with the value it is bound to within the current
environment4.  The unevaluated symbol stays a symbol, so that is how they are constructed.

symbol ⇒ whatever symbol is bound to in the current environment
'symbol ⇒ symbol
(quote symbol) ⇒ symbol

The Pair
The pair's constructor has the appearance of most user defined constructors.  This is

because the constructor is a procedure rather than a special form.  The symbol constructor
described above (the quote) is a special form, and the procedure constructor described below is a
special form.  The pair's constructor is bound to the symbol cons in the global environment5.

(cons <car> <cdr>)  ⇒
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5 The global environment is where all Scheme primitive procedures and constants are defined.

4 This return value gives it the appearance of being similar to a pair because it seems to point at
another widget, but it's not that simple of a relationship.  We treat this occurrence as a special
case.  The evaluation of a symbol more closely resembles the operation of a selector for values
within the current environment (a group of linked frames).

<car> <cdr>



The Procedure
The procedure is constructed with a special form to specify the parameters and body.  The

environment to which the procedure points is determined by when and where the procedure is
created during evaluation6.  The special form is detected by the first symbol in the evaluated list
being lambda.  <p1> through <pn> are all symbols making up the formal parameters, and
<body> is a list of unevaluated expressions (with possible define expressions at the top).

(lambda ( <p1> <p2> ... <pn>)  <body>) ⇒

Selectors

Common Characteristics
Selectors are special devices used to retrieve other widgets from widgets.  For Scheme

widgets, this can be done by returning a widget pointed to by the widget of the selector.
However, what a selector returns doesn't necessarily have to be immediately pointed to by the
widget, but the widget could be used to find or create the new widget.  Allowing selectors to
create new widgets gives flexibility to the low-level structure of widgets because as long as the
selectors return the correct value, the underlying structure of the data doesn't matter.  Selectors
are designed to retrieve a widget from a single widget, so they traditionally take as a parameter
the single widget and whatever extra information is needed to determine what is sought.

Symbols, Numbers, Strings, Boolean
Not all widgets need selectors.  Symbols7, numbers, strings8, and boolean don't point to

any widgets and represent themselves.  This makes them end-of-the-line type widgets because you
can use them to identify what to select in other widgets and have them returned by other widgets,
but they don't need  information selected from themselves to be useful.  They can be used at face
value.

The Pair
Most user defined selectors tend to be modeled similar to the pair's.  The pair uses two

procedures, one that returns the widget in the car of the pair, and the other that returns the
widget in the cdr of the pair.  The procedures are defined in the global environment as car and cdr
respectively.  They each take one parameter, a pair, because that's all they need to return the
correct values.

(car      ) ⇒ <car> (cdr       ) ⇒ <cdr>
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8 Strings actually have selectors for substrings, but these aren't necessary for the using them.

7 See footnote 4 about why symbols don't point to widgets.

6 When covering the environment diagram, the frame the procedure points to is discovered to be
the current environment of evaluation.

To Environment

P:
B:

<p1> <p2> ... <pn>
<body>

<car> <cdr> <car> <cdr>



The Procedure9

Procedures also have their own type of selector.  Calling a procedure with specific actual
parameters can be thought as specifying what needs to be returned by the procedure.  By the
general definition that I've given for selectors10, the procedure would appear to have a type of
selector operation.  This operation is built into the interpreter and is invoked whenever the
procedure is applied to actual parameters <ap1> through <apn>.11

(             <ap1> <ap2> ... <apn>)  ⇒ <value>

Predicates

Common Characteristics
Predicates are useful when you want to find out some information about your widgets.

They always return boolean values12.  For Scheme predicates, there is a convention of appending
a ? to the end of the representing symbols.  This reminds us that the symbol is representing
something that is going to evaluate to a #t or #f value.

Equality Predicates
A common question about two objects are their equality.  This becomes a complicated

issue in Scheme.  They have three predicates for testing equality bound to the symbols equal?,
eqv?, and eq? in the global environment.  Equal? is not picky and if things look the same, it will
return #t13.  Eqv? is pickier than Equal?, and Eq? is the pickiest of the three.  The best place to
find out how these predicates determine equality is by looking in the Revised Report on the
Algorithmic Language Scheme.
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13None of the equality predicates are required to tell if two procedures look the same or are the
same, so their use with procedures is undefined.

12Since Scheme assumes anything not #f is #t, they sometimes return other values other than #t.

11Remember that procedures can also have no parameters.

10I haven't checked to see if my definition is flawless, but it would seem to fit with the discussion
of selectors in SICP.

9 Using the definition that I've given for selectors you could say procedures have selectors, but
I've never heard of calling a procedure as a type of selector before (except in Message Passing).

To Frame

P:
B:

<p1> <p2> ... <pn>
<body>



Symbols, Numbers, Strings, Boolean, Pairs, Procedures
There are numerous predicates for numbers and strings which can be found in the Revised

Report on the Algorithmic Language Scheme, but the most popular predicates are probably the
ones that tell you what type of widget you are dealing with.  They consist of the name of the data
type followed by a question mark.

(symbol? <widget>) ⇒ #t if <widget> is a symbol, else #f
(number? <widget>) ⇒ #t if <widget> is a number, else #f
(string? <widget>) ⇒ #t if <widget> is a string, else #f
(boolean?  <widget>) ⇒ #t if <widget> is boolean, else #f
(pair? <widget>) ⇒ #t if <widget> is a pair, else #f
(procedure? <widget>) ⇒ #t if <widget> is a procedure, else #f 

Constants

Common Characteristics
Constants are widgets that have a known structure.  They are most often used as special

widgets that have special meanings for a particular type of widget.  Symbols, numbers, strings,
and boolean are all constants because they have values that will never change.  There are no
constant pairs or procedures that can be counted on to always have the same value14.

Mutators

Common Characteristics
Mutators modify the value of a particular widget.  This usually entails redirecting a pointer

from pointing at one widget to another widget. For Scheme mutators, there is a convention of
appending an ! to the end of the representing symbols15.

Symbols, Numbers, Strings, Boolean
Symbols, numbers, strings, and boolean lack mutators.  They are an example of unmutable

Scheme widgets.  They don't have any pointers to change and are also constants as described
above.
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15The exclamation point, !, is usually pronounced "BANG!".

14Someone told me that there is a null procedure ()  that produces the empty list, but I've also
read that all expressions in parenthesis had to have at least one element to be without error
(Revised4 Report on the Algorithmic Language Scheme, section 4.1.3. "Procedure Calls").



The Pair
The pair is a mutable widget.  It has two pointers that can be shifted about to point at

different widgets.  The primitive procedures that mutate the pointers are bound to the symbols
set-car! and set-cdr! in the global environment.  Set-car! changes the car pointer and set-cdr!
changes the cdr pointer.

(set - car!      <widget>) ⇒ 

(set-cdr!       <widget>) ⇒ 

The Procedure
A procedure's formal parameters and body, and the pointer to the frame cannot be

mutated, which means that the procedure cannot be directly mutated.  The procedure has mutable
state by changing the values in the environment to which it points.  In fact anything that changes a
value bound to a symbol within a procedure's connected environment will change the effective
data set the procedure uses (because a procedure doesn't have to use all of the symbols in its
environment, there is a possibility this won't change how it evaluates).

This state is changed by mutating the environment which is done through either the define
or set! special forms.  The define special form only binds and re-binds symbols in the current
frame.  It also has many limitations on where it can be used in your program16.  The set! special
form only re-binds symbols in the current environment.  It can be used anyplace a normal
expression can be used.  Because I'm not covering the frame widgets, I can't show a pictorial
example of how define and set! work.
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16 The limitations of the define special form seem more restrictive than necessary, yet they are
there (Revised4 Report on the Algorithmic Language Scheme, Section 5.2. "Definitions").

<car> <cdr> <widget> <cdr>

<car> <cdr> <car> <widget>



Scheme List17 Example

The Abstract List
When coming up with a higher level abstraction, first you must make a picture to

represent your new data type (widget).  Lists consist of two parts, a head and a tail.  The head
contains a piece of datum and the tail is a sublist containing more data.  An empty list is a list
without any data or sublists.  Now let's draw our picture18.

After drawing our picture, we are now ready to make the list widget out of Scheme's basic
widgets.  We will be developing the list by imitating the different interfaces described above.

The Constructor
There needs to be a way to create our list.  Scheme makes this easy by providing a

primitive procedure to do this for us.  It takes any number of arguments, so we can make lists of
any sizes.  This provided constructor is bound to the symbol list in the global environment.  The
Scheme list is constructed using the pair widget because it has two pointers, one to point at the
datum, and the other at the tail.  The last tail in the list, (), is a Scheme invention called the empty
list.  It's declared to not be a pair, but still a list.  It's not a symbol or a boolean value.

(list <d1> <d2> ... <dn>)  ⇒
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18The pictures I draw are not special, they are only examples of how I imagine the data types
could be drawn.  Notice that I don't point at the datum widgets using pointers, but put them inside
the heads.  This is to make the diagram simpler, not because it is the best representation.

17The normal definition of a list is a sequence of elements.  Scheme uses a special type of list
called a linked-list.  Lists do not have to be linked so that the head points to the tail.

a b c d e

head tail has an empty list tail.

An Example of a List

...

<d1> <d2> <dn>

a b c d e

head tail

The Lower-Level Structor of a List

()



The Constants
The constant for lists is the empty list.  It cannot be changed and is always the same

widget that represents the empty list.  I choose to draw an empty list as a circle without any
datum pointer or tail pointer, because then it resembles a list with the properties of an empty list.

The Selectors
In order to get at the datum and tail at the head of the list, we need selectors.  Scheme's

implementation uses crude selectors, namely car and cdr.  The selector car, which normally gets
the left pointer in a pair, now returns the datum, and cdr, which normally gets the right pointer in
a pair, now returns the tail.  This choice of using the low-level selectors to interface with a list,
rather than making high-level selectors, is known as a data abstraction violation.  To make a list
more kosher, I suggest defining new selectors in the global environment, list-datum and list-tail.

(define (list-datum list) (car list))
(define (list-tail list) (cdr  list))

(list-datum                 ) ⇒ <d1>

(list-tail                ) ⇒

The Predicates
Scheme provides two general predicates for use with lists.  They are bound to the symbols

list? and null?.  List? returns #t if the given widget is a list.  Null? returns #t if the given widget is
an empty list.

(list?  <widget>) ⇒ #t if <widget> is a list, else #f

(null?  <widget>) ⇒ #t if <widget> is an empty list, else #f

The Mutators
The mutators for lists are set-car! and set-cdr!, yet another data abstraction violation.  To

remedy this, I suggest defining more abstract mutators in the global environment (just as we did
with the selectors) list-set-datum! and list-set-tail!.

(define (list-set-datum! list widget) (set-car! list widget))
(define (list-set-tail! list widget) ( set- cdr !  list widget))

(list-set-datum!                 <widget>) ⇒ 

(list-set-tail!                             ) ⇒
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...

<d1> <d2> <dn>

...

<d1> <d2> <dn>

...

<d2> <dn>

...

<d1> <d2> <dn>

...

<widget> <d2> <dn>

...

<d1> <d2> <dn>

...

<a1> <ak>

...

<d1> <a1> <ak>



General Tree Example

The Abstract Tree
Because we are developing a higher level abstraction, we must once again make a picture

to represent our new data type (widget).  Trees consist of nodes connected together in a
hierarchical fashion with a parent node directly above children nodes.  At the very top of the tree
is one node, called the root which has no parents.  At the bottom of the tree are nodes without
children called leaves19.  The height of a tree is the longest path of nodes from the root to a leaf.
Siblings are nodes who share the same parent node.  A node a that can be reached from following
a path starting at node b going to the root is called an ancestor of b.  A node a that can be
reached from following a path start at node b going to a leaf is called a descendant of b.  A tree is
made up of subtrees that are connected to the root.  Now let's draw our picture.

The Constructor
After drawing our picture, we are now ready to make a tree widget out of Scheme's basic

widgets.  Looking at the picture, we see that the tree is basically built from nodes which all share
the same characteristics of having parents and children.  To make our tree simpler, I have chosen
to design it so the nodes only have pointers to their children, not to their parent.  Each node also
must point to a datum widget.  What would allow us to have one pointer to the datum and
multiple pointers for all the possible children?  One possibility is a pair who's car points at the
datum and whose cdr points at a list of children.
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19Choosing to mix normal trees and family trees makes nomenclature entertaining.
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The Lower-Level Structor of a Tree Node
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<c1> <c2> <cn>

list of children nodes



Notice how I purposely avoided drawing the list as a bunch of pairs.  Not only would that
representation have been a data abstraction violation since I said I was going to use a list, but it
would have looked like I was using a bunch of pairs instead of a list.  Now it should be fairly
straight forward to write the constructor for a tree20.

(define (make-tree datum . children)
  (cons datum children))

Another constructor could take the datum and a list of children.  This may seem like a lazy
way of making a constructor because we just put the list in the pair, but notice that if we decided
to use something other than a list, we could easily convert that list into something else.  We are
also not violating any data abstractions because we explicitly tell the user that it takes a list of
children nodes as input and not something different.

(define (make-tree2  datum list-of-children)
  (cons datum list-of-children))

The Constants
We need a constant to represent an empty tree, just like we needed a constant for lists

which represented an empty list.  Once we define what this constant is, it should never change,
and it'll always represent an empty tree.  A picture of an empty tree should not be the same as a
list because a list is not a tree.  To differentiate between the two, I suggest that an empty tree be
drawn as a circle with a "T'' drawn in it.  An empty tree node cannot be a leaf because it doesn't
perform the function of a real node having a datum.

(define empty-tree 'the-empty-tree)
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20I use the '.' in the formal parameter list to indicate that I have a variable number of values after
that point.  All of those values are placed in a list which works nicely with our lower-level data
structure.

The Abstract  Empty Tree Node



The Selectors
There are various selectors we can write for our tree.  One is for getting the datum and the

other the children or a child.  I'll define three selectors, tree-datum, tree-children-list, and
tree-child.  Tree-datum will return the data of the current tree's root node.  Tree-children-list will
return a list of all the children of current tree's root node.  Tree-child returns a child of the tree's
root node given an index number which searches the children going from left to right.  It also
returns an empty tree node if  no child is found at the given index.

(define (tree-datum tree) (car tree))
(define (tree-children-list tree) (cdr  tree))
(define (tree-child tree index)
  (define (index-list i  list-of-trees)
    (cond  ((null? list-of-trees) empty-tree)
          ((= i  0) (list-datum list-of-trees))
          (else (index-list (- i  1) (list-tail list-of-trees)))))
  (index-list index (tree-children-list tree)))

The Predicates
There are also a few predicates needed to help finish the abstract interface to our tree

widget.  We can make a tree? predicate which parallels with Scheme's list? predicate, and an
empty-tree? predicate which parallels with Scheme's null? predicate.  The tree? predicate should
make sure the structure of the widget is the same as a tree.  If it isn't then it's not a tree.  The
empty-tree? just checks to see if the widget is the empty tree constant.

(define (tree? widget)
  (define (list-of-trees? list-of-widgets)
    (if (null? list-of-widgets) #t
        (and (tree? (list-datum list-of-widgets))
             (list-of-trees? (list-tail list-of-widgets)))))
  (cond  ((empty-tree? widget) #t)
        ((not (pair? widget)) #f)
        ((not (list? (cdr  widget))) #f)
        (else (list-of-trees? (cdr  widget)))))
(define (empty-tree? widget) (equal? widget empty-tree))

The Mutators
Now we want ways to mutate the parts of our tree.  To keep the mutators simple, I

suggest making a mutator that makes the node point to a different datum widget, and one to
change the children.  These will closely resemble the constructors.  Tree-datum! will change the
datum of the node.  Tree-children! will accept a variable number of children as an argument and
change the children to be those given.  Tree-children-list! will accept a list of children and make
all of the children in the node be those in the list.

(define (tree-datum! tree datum) (set-car! tree datum))
(define (tree-children! tree . children)
  (set-cdr!  tree children))
(define (tree-children-list! tree list-of-children)
  (set-cdr!  tree list-of-children))
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The Tree Hierarchy

What Trees Represent
Trees are commonly used to represent a hierarchy of information.  The hierarchy is often

used  to take advantage of classifying items by starting at a base followed by each subtree being
more specific in meaning than its parent.  An example would be the classification of living
organisms.  Starting at the top you have the broad class of living organisms.  As you move down,
the organisms are continuously subdivided into more and more groups.

Another type of hierarchy resembles something that's in a particular order in respect to the
root node.  Two examples of this are the heap and binary search trees.  The heap is composed of
each parent of the tree having a number of greater value that its children.  The parent nodes of a
binary search tree all having descendants with datums less in value than its own datum down its
left branch, and greater in value than its own datum down its right branch.

Trees can also be used to represent the order of operations.  For example, the tree below
could be used to perform a series of arithmatic operations to simplify a mathematical expression:
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10 13

9 3 7 11 12

5 2 6 1 8 4

An Example of a Heap

8

4 12

10 14

9 11 13 15

An Example of a

2

1 3

6

5

Binary Search Tree

+

* /

- 3 7 + +

5 2 6 1 8 4

An Example of the
Math Expression

(+ (* (- 5 2) 3 7) (/ (+ 6 1) (+ 8 4)))



Searching Trees
There are two common methods of searching trees, the depth-first search and the

breadth-first search.  Depth-first search simply checks the current node and if it doesn't match the
search requirements, chooses to descend down a branch to continue the search.  If all the nodes in
that branch have been exhausted, the search continues down a new branch until all of the branches
have been searched.  When nothing has been found in the tree, the search failes. 

Breadth-first search searches all nodes at a particular hight in the tree before continuing on
to a lower depth.
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Operating on Trees
There are three general orders of operating on trees – preorder, postorder, and inorder.

These describe the order in which the nodes are visited and operated upon.  Their descriptions are
as follows:

Preorder - Works on general trees.
1. Operate on root node.
2. Operate on subtrees.

Postorder - Works on general trees.
1. Operate on subtrees.
2. Operate on root node.
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Inorder - Works on binary trees.
1. Operate on left subtree.
2. Operate on root node.
3. Operate on right subtree.

As an example of each operation, I'll collect the node values into a list using each of the
orders.  Notice how I explicitly make sure the operations are done in the correct order by using
let special forms.

(define (append-lists lists)
  (if (null? lists) '()
      (append (car lists) (append-lists (cdr  lists)))))

(define ( preorder tree)
  (if (empty-tree? tree) '()
      (let ((root (list (tree-datum tree))))
        (let ((subtrees  (map preorder  (tree-children-list tree))))
          (append root (append-lists subtrees))))))

(define ( postorder tree)
  (if (empty-tree? tree) '()
      (let ((subtrees  (map post order  (tree-children-list tree))))
        (let ((root (list (tree-datum tree))))
          (append (append-lists subtrees)  root))))

(define ( inorder binary-tree)
  (if (empty-tree? tree) '()
      (let ((left (inorder  (tree-child binary-tree))))
        (let ((root (list (tree-datum tree))))
          (let ((right (inorder  (tree-child binary-tree))))
            (append left root right)))))
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Data Abstraction Techniques

Manifest Data Types
Data has a manifest type if  its type can be clearly known and tested.  Primitive Scheme

widgets have manifest types.  These are numbers, boolean, strings, symbols, procedures, and
pairs.  The other complex data types that we created, lists and trees, do not have manifest types,
because they may appear to be the correct type, but we don't know for certain.

A method of creating our own manifest types is through data tagging.  By tagging each
type of data with a name, we can easily distinguish between types without accidentally confusing
two types that look the same.  To help us work with tags, we can create constructors to wrap
data and selectors to obtain the tags and data.21

Constructor:
(define (attach-type type contents)
  (cons type contents))

Selectors:
(define (type datum)
  (if (pair? datum) (car datum) 'primitive)

(define (contents datum)
  (if (pair? datum) (cdr  datum) datum)

To help this discussion of types, I'll redefine the tree constructor and predicate so that it
becomes a manifest type, and make a new type of tree, a binary tree.

Binary Tree Constructor:
(define (make-btree  datum left right)
  (attach-type 'btree  (list datum left right)))

Binary Tree Constant:
(define empty-btree  'the-empty-btree)

Binary Tree Selectors:
(define (btree-datum  btree)  (car btree))
(define (btree-left  btree)  (cadr  btree))
(define (btree-right  btree)  (caddr  btree) )
(define (btree- children-list  btree)  (cdr  btree))
(define (btree- child  btree  index )
  (cond  ((= index 0) (btree-left  btree))
        ((= index 1) (btree-right  btree))
        (else empty-btree)) )

Binary Tree Predicates:
(define (btree?  widget) (eq?  (type widget) 'btree))
(define (empty-btree?  widget) (equal? widget empty-btree))
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symbols easy to use with this new paradigm.  SICP chose a better, more complex alternative.



General Tree Constructor:
(define (make-tree datum . children)
  (attach-type 'tree (cons datum children)))

General Tree Predicates:
(define (tree? widget) (eq?  (type widget) 'tree))
(define (emp ty-tree? widget) (equal? widget empty-tree))

Explicit Dispatch
Explicit dispatch is where procedures are made to determine what type is being used and

act accordingly.  We have two types of trees, both with different types of selectors.  It would be
nice to have a general set of tools to treat both of them same.  Here's how that would be done
using explicit dispatch:

(define (get-datum datum)
  (let ((widget (contents datum)))
    (cond  ((tree? datum) (tree-datum widget))
          ((btree?  datum) (btree-datum  widget)))))

(define (get-children-list datum)
  (let ((widget (contents datum)))
    (cond  ((tree? datum) (tree-chil dren-list widget))
          ((btree?  datum) (btree-children-list  widget)))))

(define (get-child datum index)
  (let ((widget (contents datum)))
    (cond  ((tree? datum) (tree-child widget index))
          ((btree?  datum) (btree-child  widget index)))))

The main features of explicit dispatch are given below:
� Operators check type.
� Operators determine how to evaluate correctly.
� Code forced to be grouped by operator.

Data-Directed Programming
Data-directed is where the operators are stored in a 2-Dimensional table, organized by

type, and a generic application procedure can correctly choose and carry out the proper action.
For storing information in the table, we are introduced to two new Berkeley Scheme procedures
put and get.  Put is a mutator, and get is a selector.  Their prototypes are as follows:

(put <type> <op> <item> ) ⇒  An unspecified value.
(get <type> <op>) ⇒  The item stored at the given location in the table.
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To apply the operators, we need to make a generic application procedure.  It must take
the operator, determine the type of datum being used, and apply the correct procedure.  A simple
version would be written as follows:

(define (apply-generic op . data)
  (let ((widget-types (map type data))
        (widgets (map contents data)))
    (let ((proc  (get widget-types op)))
      ( apply proc  widgets))))

The apply-generic procedure is made to work with procedures of multiple parameters.  It
handles this by using a list of the parameter types as the acceptable data type of the operator.  The
apply procedure used in the definition simply applies the given procedure to the list of actual
parameters22.  Now all we need to do is put the procedures in the correct locations within the
table:

(put '(tree) 'get-datum tree-datum)
(put '(tree) 'get-children-list tree-children-list)
(put '(tree primitive) 'get-child tree-child)

(put ' ( btree )  'get-datum  btree-datum)
(put ' ( btree )  'get-children-list btree-children-list)
(put '(btree  primitive) 'get-child btree-child)

A curiousity about data-directed programming is that you aren't forced to group the definitions in
any particular way.  Above they are grouped by type, but we could also group them by operators.

(put '(tree) 'get-datum tree-datum)
(put ' ( btree )  'get-datum  btree-datum)

(put '(tree) 'get-children-list tree-children-list)
(put ' ( btree )  'get-children-list btree-children-list)

(put '(tree primitive) 'get-child tree-child)
(put '(btree  primitive) 'get-child btree-child )

The main features of data-directed programming are given below:
� Data determines type.
� Table used to choose correct operator based on actual parameter types.
� Code easily organized by type or operator.
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Message Passing
Message passing is where the operators are built into the data itself.  The easiest way to

represent message passing data types is by using procedures.  To make the implementation more
closely related to SICP, I'll also introduce a new way of making data have manifest type.  First
we'll change the constructors to create data which takes messages.23

General Tree Constructor:
(define (make-tree datum . children)
  (lambda (op . params)
    (cond  ((eq ? op  'type) 'tree)
          ((eq?  op 'empty?) #f)
          ((eq?  op 'get-datum) datum)
          ((eq?  op 'get-children-list) children)
          ((eq?  op 'get-child)
           (let ((index (car params)) )
             (if (>= index (length children))
                 empty-tree
                 (list-ref  children (car params) ) ) )) ) ))

Binary Tree Constructor:
(define (make-btree  datum left right)
  (lambda (op . params)
    (cond  ((eq?  op 'type) 'btree)
          ((eq?  op 'empty?) #f)
          ((eq?  op 'get-datum) datum)
          ((eq?  op 'get-children-list) (list left right))
          ((eq?  op 'get-child)
           ( let ((index (car params)))
             (cond  ((= index 0) left)
                   ((= index 1) right)
                   (else empty-btree ) ) )))))

Now we should also redefine the predicates.  At the same time, defining constants which
are procedures may be more helpful than the plain symbolic one.

General Tree Constant:
(define (empty-tree op)
  (cond  ((eq ? op 'type) 'tree)
        ((eq?  op 'empty?) #t)))

General Tree Predicates:
(define (tree? widget)
  (and (procedure? widget) (eq?  (widget 'type) 'tree)))

(define (emp ty-tree? widget)
  (and (procedure? widget) (widget 'empty?)))
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Binary Tree Constant:
(define (empty-btree  op)
  (cond  ((eq ? op 'type) 'btree)
        ((eq?  op 'empty?) #t)))

Binary Tree Predicates:
(define (btree?  widget)
  (and (procedure? widget) (eq?  (widget 'type) 'btree)))

(define (emp ty-btree?  widget)
  (and (procedure? widget) (widget 'empty?)))

As a way to show that message passing data can be interfaced with similarly to the
data-directed style, the apply-generic procedure can be redefined as:

(define (apply-generic op . data)
  (let ((wi dget (car data))
        (params  (cdr  data)))
    (apply widget (append (list widget) params ) )))

The main features of message passing are given below:
� Data determines type.
� Data has the correct operator and applies it for a correct result.
� Code forced to be grouped by type.
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