
Berkeley Scheme’s OOP

Introduction to Mutation
If we want to directly change the value of a variable, we need a new special form, set!

(pronounced “set BANG!”).

(set! <variable> <new-value>)
(set-car! <pair> <new-value>)
(set-cdr! <pair> <new-value>)

To make the discussion more complete, notice that you can’t use set! to change the elements
inside a pair, but there are separate procedures (not special forms), set-car! and set-cdr!, to do
that for you (pairs are a different data structure). These all return some unspecified value, but
they change the current state1 of the given variable or pair.

Evaluating Sequences of Expressions
Sometimes we have a list of expressions that need to be evaluted in a special order. Some

expressions, like cond, lambda, or procedure define, automatically allow you to put multiple
expressions in order (such as after the predicates in a cond and in the body of a procedure).
Others, like if, are incapable of allowing multiple expressions to be listed in sequence. For these
cases, you must use a Scheme special form, begin:

> (begin (display “I will square 5.”)
 (square 25)
 (square 5))
I will square 5.
25

Notice that the result of evaluating the begin special form is the value returned from evaluating
the last expression in the list of expressions.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

1 State has to do with the way a value looks. If you can mutate a value, then its form changes and
we say its state changes.

Interactive Abstraction of Berkeley Scheme’s OOP
The abstraction barrier is created in OOP by the user interfacing with the objects through a

type of message passing. The programmer actually asks the object to do something and may
provide needed arguments as well. One example taken from the reader is:

You can even use actual parameters to elaborate on what your are asking. The true form of ask
looks like this:

(ask <object> <message> <param1> ... <paramn>)

where you can have zero or more actual parameters. Message must be a symbol, so it will always
be quoted.

Classes & Methods
Now we’d like to find out how to define objects and classes (the object oriented design is

an example of how expandable Scheme is since it can be written using normal Scheme
expressions). To define a class you have the following form:

(define-class (<class-name> <obj-param1> ... <obj-paramn>) <class-components>)

The class is bound to the given symbol, class-name. The optional parameters are the
instantiation variables, those variables that need specified values at the creation of an object. The
body of the class, class-components, is a list of class special forms that define internal state and
procedures.

The most important class component is the method. Methods are simply procedures
defined inside the class. In order to use the methods, you must use the ask procedure shown
above. Each method is referred to by its method name which is the message. Each method can
also have corresponding formal parameters. To define a method within a class you have the
following form:

(method (<method-name> <param1> ... <paramn>) <body>)

To create an object, the instantiate procedure must be invoked given the class and the
actual parameters needed to fill the instantiation variables. The instantiate procedure has the
following form:

(instantiate <class> <obj-param1> ... <obj-paramn>)

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(ask Matt-Account 'balance)

the object being asked to do what

The following examples taken from the reader show how to form expressions using the
previously covered forms:

(define-class (account balance)
 (method (deposit amount)
 (set! balance (+ amount balance))
 balance)
 (method (withdraw amount)
 (if (< balance amount)
 “Insufficient funds”
 (begin
 (set! balance (- balance amount))
 balance))))

(define Matt -Account (instantiate account 1000))

Internal State
There are three types of variables that can be defined inside a class, instantiation

variables, instance variables, and class variables. Each one has a special purpose in a class.

Instantiation Variables: These are what you define when you first make an object.
(define-class (<class-name> <var-name1> ... <var-namen>) ...)

Instance Variables: These are bound with the value resulting from the evaluation of the
corresponding expression when the object is created. This is a class component.

(instance-vars (<var-name1> <exp1>) ... (<var-namen> <expn>))

Class Variables: These are bound with the value resulting from the evaluation of the
corresponding expression when the class is created. This is a class component.

(class-vars (<var-name1> <exp1>) ... (<var-namen> <expn>))

Variables can only be accessed directly within their own class definition2. For each variable in an
object, there is a method created with the same name which returns the variable’s value. Class
variables can be accessed from both the class and the object because they are shared by both. By
using ask, class variables can be returned. This has the following form:

(ask <class or object> <var-name>)

Remember that var-name must be a quoted symbol since ask is a procedure and not a special
form.

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

2 In the case of inheritance discussed later, a parent class is not considered a part of the child
class, so the inherited variables are not directly accessable.

The Self Object
Each object needs a way to access itself to use its own methods. While its variables can

be accessed by evaluating Scheme symbols in the normal fashion, methods are not bound to
symbols in the same way and must be asked to perform an operation3. To facilitate this need, a
local instance variable, self, is created in each object and is bound to each corresponding object.
Within an object, the self variable can be used as shown:

(ask self <message> <param1> ... <paramn>)

Inheritance
An important feature of our OOP paradigm is inheritance. We can reuse class structures

as the basis for new, more specific classes. The new class shares the methods of the base classes4,
and can be expanded on to have additional state variables and procedures. This is done by using
the parent class component. The parent special form can take as many classes as you want the
new class to inherit from. Any conflicting names of methods will be resolved by using the value
from the parent closest to the front of the list. This has the following form:

(parent (<class-name1> <param1> ... <paramk>)
 ...

 (<class-namen> <param1> ... <paraml>))

In order to access variables related to a parent class, the method must be used because the child
only shares method definitions, not variable definitions. The inheritance example from the reader
is:

(define-class (checking-account init-balance)
 (parent (account init-balance))
 (method (write-check amount)
 (ask self ‘withdraw (+ amount 0.10))))

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

4 This is an important distinction from other OOP languages. In other languages, variables are
also shared by the child class. This implementation of OOP only shares methods.

3 You need ask to use methods because they are not bound to symbols in Scheme’s environment
like local variables. Instead, they are stored in a separate data structure, and must be looked up
there.

Asking The Usual Method
There are times when you have a child class and you need to make some of its methods do

something slightly different than its parent's methods. If you want the child class's interface to
match the parent's, then you'll need to use the same method names as those used in the parent
class. Now if you also need to call the parent's methods instead of the newly redefined methods,
you're in trouble if you only have ask because it checks for the child class's methods before
checking for the parent class's methods.

The usual method call is just like using ask with self except it acts as though the method
name provided could not be found in the child class, so it automatically starts checking the parent
classes. The example given in the reader is:

(define-class (TA)
 (parent (worker))
 (method (work)
 (usual 'work)
 '(Let me help you with that box and pointer diagram))

 (method (grade-exam) 'A+))

Notice how the work method was defined in the TA class, yet within the class we needed to access
the parent's work method. In this case, if usual hadn't been used, an infinite loop would have been
formed.

Initialize Procedure
The class’s initialize procedure is always called at the creation of an object. It can be used

to perform operations that need to be done whenever an object is created. A common use of the
initialize procedure is to make a list of all the objects of a given class that are in existence (usually
stored in a class variable). The example given in the reader is:

(define-class (worker)
 (instance-vars (hunger 0))
 (class-vars (all-workers ‘())
 (work-done 0))
 (initialize (set! all-workers (cons self all-workers)))
 (method (work)
 (set! hunger (1+ hunger))
 (set! work-done (1+ work-done))
 ‘whistle-while-you-work))

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

The Default Method
The default-method in a class defines a method that is called when the user asks the object

to perform an undefined method. There are two implicit formal parameters to this method,
message and args. The message symbol is bound to the method name that wasn’t found. The
args symbol is bound to those actual parameters (values) that follow after the method name. The
example given in the reader is:

(define-class (echo-previous)
 (instance-vars (previous-message ‘first-time))
 (default-method
 (let ((result previous-message))
 (set! previous-message message)

 result)))

The downfall of default-method is that it is only called when all other cases are exhausted, so if
you have a parent class, the class’s default-method is ignored and skipped over when the
evaluator decides to look for the missing methods inside the parent class(es). The side-effect is
that any default-method in a child class is never used.

Page < 6 >
By Joshua Cantrell
jjc@cory.berkeley.edu

