Given that the following were evaluated sequentially, draw the corresponding environment diagram.

> (define (quiz-cons a b)
(let ((cons (cons (a b))))
(lambda (rmesq)

(define wasted 6)

(cond ((eq? 'bark mesg) b)
((eg? 'woof nmesg) a)
((eg? 'cons nesg) cons)
(e

Ise (error "ERR' nesg))))))

define apple (quiz-cons '"apple 'core))

define no-apple (quiz-cons "apple "Ch! There's nore!"))

define ghastly (cons (apple 'bark) (no-apple 'woof)))

> (
> (
> (cdr (no-apple 'cons))
> (
> (

set-car! ghastly apple)

Evaluating: (define (quiz-cons a b) ...)

CF—> Global

This has syntactic sugar, so translate it into
real code.

Step 1

Evaluating: (define qui z-cons

(lanbda (a b) ...))
CF—> Global

Defineisaspecial form. We must evaluate
the expression to find out what the name
quiz-cons will point to.

Step 2

Evaluating: (I anbda (a b) (let (...) ...))

CF—> Global

Lambda is a special form. Thiscreatesa
procedure which is drawn as a bubble pair.
One bubble points to the parameters and
body of the procedure. The other bubble
points to the frame it was evaluated in (the
Current Frame).

Step 3

Evaluating: (define qui z-cons T)

CF—>{ Global

quiz-cons ———

The expression in the define special form has
been evaluated, now we create the name
quiz-consin the current frame and make it
point to the result of the evaluated expression.

Step 4

Evaluating: (define apple (quiz-cons "apple 'core))

CF—> Global

quiz-cons

Define isaspecial form. We must evaluate the expression to find out what the name apple will
point to.

Step 5

Evaluating: (qui z-cons ' appl e 'core)

CF—> Global

quiz-cons

This expression is not a special form. Each sub-expression must be evaluated (in any order).

Step 6

Evaluating: qui z- cons Evaluating: ' appl e Evaluating: ' core

CF > Global > appl e
quiz-cons

core

Evaluating the name quiz-cons, we look in the current frame and find the name exists, so it
evaluates to what quiz-cons points to in the current frame. Evaluating 'apple returns the symbol
apple. Likewise, evaluating 'core returns the symbol core.

Step 7

Evaluating: (%)

CF(-1)> Global |
- —> appl e
cor e quiz-cons CF%%—)Cgpe
appl e P:a, b
B: (let (...) ...)

This expression is not a special form. Now that each expression has been evaluated, the first
expression is a procedure (or an error occures) and it is evaluated with the given arguments
(awrong number of argumentsisalso an error). When the procedure is evaluated, a frame is
created that points to the same frame the evaluated procedure pointsto. The parameter names
are bound in the frame with the proper arguments. The CF pointer movesto the new frame and
starts evaluating the body of the procedure. All previous CFs I'll label as CF(-n) so we know
where to return when the body of the procedure has been evaluated.

Step 8

Evaluating: (let ((cons (cons a b))) (lanmbda (nesg) ...))

CF(-1)> Global |

quiz-cons CF—>

P:a, b
B: (let (...) ...)

The let expression is syntactic sugar for an evaluated lambda.
W e must translate this into real code.

Step 9

Evaluating: ((l anbda (cons) (lambda (nmesg) ...)) (cons a b))

CF(-1)> Global |

quiz-cons CF—>

P:a, b
B: (let (...) ...)

Now that we have removed the syntactic sugar, we see that this expression is not a special form.
Each sub-expression must be evaluated (in any order).

Step 10

Evaluating: ((l anbda (cons) (lambda (nmesg) ...)) (cons a b))

CF(-1)> Global |
quiz-cons CF gj) ggPLe
P:a, b
B: (let (...) ...)

Now that we have removed the syntactic sugar, we see that this expression is not a special form.
Each sub-expression must be evaluated (in any order).

Step 11
Evaluating: (I ambda (cons) (lanbda (nesg) ...)) Evaluating: (cons a b)
CF(-1)> Global %\ I
i appl e
quiz-cons CF—> g% CgPe
- &, P: cons
B:(let(...)...) B: (lambda (...) ...)

W e evaluate the lambda special form aswe did before, drawing the bubble pair. The other
expression is not a special form and each sub-expression must be evaluated (in any order).

Step 12
Evaluating: cons Evaluatingj Evaluating: b
#<pp: cons> appl e core
CF(-1)> Global %\ I
- appl e
quiz-cons CF%g%che @

P:-a,b P: cons
B: (let (...) ...) B: (lambda (...) ...)

To evaluate the name cons, we must check the current frame, but don't find it, so we check the
frame pointed to by the current frame, and check there. Consis defined in the Global
Environment as a primitive procedure (a built in procedure). | draw it as#<pp:cons>.

To evaluate the name a we check the current frame and find it evaluates to the symbol apple.
To evaluate the name b we check the current frame and find it evaluates to the symbol core.

Step 13

Evaluating: ()

#<pp: cons> appl e cor e apple core

CF(-1)> Global |

- a—> appl e
quiz-cons ——— CF—> b%cgpe @

P:a, b P: cons
B: (let (..) ...) B: (lambda (...) ...)

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. The primitive procedure cons makes a pair who's first argument is the car and
the second is the cdr. (Note: no frames are made for primitve procedures.)

Step 14

Evaluating: (2 1)

apple core

CF(-2)> Global |
quiz-cons CF(-1)> g:; ggPLe <
e
+a, b A P: cons
B: (let (...) ...) B: (lambda (...) ...)
CE—fcons

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. This is not a special form, the given procedure is applied to the given arguments.
This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

Step 15

Evaluating: (1 anbda (nmesg) (define wasted 6) (cond ...))
\

CF(-2)> Global |
quiz-cons CF(-1)> gz ggPLe
P:a,b i
' P: cons
B: (let(...) ...) B: (lambda (...) ...)
CF > cons
apple core
P: mesg

B: (define ...) (cond ...)

W e evaluate the lambda special form aswe did before, drawing the bubble pair. Since thisis
the last expression to be evaluated in this procedure, the evaluation result becomes the return

value of the procedure. We will be moving back to the previous CF and finish evaluating the
procedure that this procedure was evaluated in.

Step 16
Result: &
CF(-1) = Global \
quiz-cons CF g:; ggPL}e ?&
P:a,b
’ P:cons
B: (let (...) ...) B: (lambda (...) ...)
cons
apple core

P: mesg
B: (define ...) (cond ...)

After returning the result, we notice that thisis the result of evaluating the last expression in
this procedure. This meansthisis also the result of evaluating this procedure.

Step 17

Evaluating: (define apple F)

CF—> Global %‘ |
quiz-cons a appl e
apple b —>core <
P:a,b
! P: cons
B: (let (...) ...) B: (lambda (...) ...)
cons
apple core
P: mesg

B: (define ...) (cond ...)

Now that we have evaluated the expression in the define special form, we bind the name apple
in the Current Frame to the result.

Step 18
Evaluating: (define no-apple (quiz-cons 'apple "Ch! There's nore!"))
CF—> Global %‘ |
iz appl e
quiz-cons > R
P:a,b
B: (let (...) ...)
P:cons
B: (lambda (...) ...)
cons
apple core
P: mesg

B: (define ...) (cond ...)

Define isaspecial form. We must evaluate the expression to find out what the name no-apple
will point to.

Step 19

Evaluating: (qui z-cons 'apple "COh! There's nore!")

CF—> Global

quiz-cons

apple

This expression is not a special form. Each sub-expression must be evaluated (in any order).

N

P:a,b
B: (let (...) ...)

Step 20

a —> appl
b —>core <
: cons
 (lambda (...) ...)
cons
apple core

A,

P: mesg

B: (define ...) (cond ...)

Evaluating: (qui z-cons 'apple "Ch! There's nore!")

apple "On! There's nore!"
CF > Global v
quiz-cons >0
apple
P:a,b
B: (let(...)...)

a —> appl
b —>core [<
: cons
: (lambda (...) ...)
cons
apple core

A,

P: mesg

B: (define ...) (cond ...)

Evaluating the name quiz-cons, we look in the current frame and find the name exists, so it

evaluates to what quiz-cons points to in the current frame. Evaluating 'apple returns the symbol

apple. Evaluating the string "Oh There's more!" returns the string "Oh There's more!" .

Step 21

Evaluating:jm E ?)
appl e "Ch! There's nore!"
CF(-1)>{ Global L \

quiz-cons >@®
apple

ppl e

core
ca, b ?(E
t(let(..) -)

P: cons

O'DJ

B: (lambda (...) ...)
CF»a%Q e |) cons
h —> Eﬁ! There's nore! apple core
P: mesg

B: (define ...) (cond ...)

Now that each expression inside this expression has been evaluated, we can evaluate this

expression. This is not a special form, the given procedure is applied to the given arguments.

This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

Step 22

Evaluating: (let ((cons (cons a b))) (lanmbda (nesg) ...))

CF(-1)> Global |

- —> appl e
quiz-cons @@ a
apple b—>core <

P:a,b
B: (let(...)...)
P:cons
B: (lambda (...) ...)
% appl e cons
CF=> a Eﬁ There's nore!™” apple core

A,

P: mesg
B: (define ...) (cond ...)

The let expression is syntactic sugar for an evaluated lambda.
W e must translate this into real code.

Step 23

Evaluating: ((l anbda (cons) (lanbda (mesg) ...)) (cons a b))

CF(-1) > Global |
quiz-cons @@ a2 ppI ¢
apple b ot @
P:a,b
B: (let (...) ...)
P: cons
B: (lambda (...) ...)
CF >a > apple ‘ - cons
h —> Eﬁ! There's nore! apple core
P: mesg

B: (define ...) (cond ...)

Now that we have removed the syntactic sugar, we see that this expression is not a special form.

Each sub-expression must be evaluated (in any order).

Step 24
Evaluating: (1 anbda (cons) (lanbda (mesg) ...)) Evaluating: (cons a b)
CF(-1)~> Global | |
quiz-cons a—>apple
apple : %i b —> core
P:a,b
B: (let (...) ...) i
P: cons
B: (lambda (...) ...)
CE> a % appl e cons %
Eﬁ There's nore!" v apple core
17
P: cons
B: (lambda (...) ...) }i%\

P: mesg
B: (define ...) (cond ...)

W e evaluate the lambda special form aswe did before, drawing the bubble pair. The other
expression is not a special form and each sub-expression must be evaluated (in any order).

Step 25

Evaluating: cons Evaluating:s Evaluating: b

#<pp: cons> appl e "Ch! There's nore!"
CF(-1)> Global |
; —> appl e
quiz-cons a pp
Aonle @@ b—>core <

P: cons
B: (lambda (...) ...)

cons

| e]
'Eﬁl There's nore!" [< apé?;Ljéére
P:cons
B: (lambda (...) ..)

P: mesg

B: (define ...) (cond ...)
To evaluate the name cons, we must check the current frame, but don't find it, so we check the
frame pointed to by the current frame, and check there. Consisdefined in the Global
Environment as a primitive procedure (a built in procedure). | draw it as #<pp:cons>.
To evaluate the name a we check the current frame and find it evaluates to the symbol apple.
To evaluate the name b we check the current frame and find it evaluates to the string
"Oh! There'smore!".

CF—>

O'DJ

Step 26

Evaluating: ()

apple "Ch! There's nore!"
#<pp: cons> apple "Oh! There's nore!"

CF(-1)> Global \

- —> appl e
quiz-cons >@@ a
apple b—>core <

P:a,b
B: (let (...) ...)

P: cons
B: (lambda (...) ...)

e cons —]
'Eﬁl There's nore!" [< apg?;i\%tre
P:cons
B: (lambda (...) ...)

P: mesg
B: (define ...) (cond ...)

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. The primitive procedure cons makes a pair who's first argument is the car and
the second is the cdr. (Note: no frames are made for primitve procedures.)

Step 27

CF—>

O'DJ

Evaluating: (? E

)!*
apple |"Ch! There's nore!”
CF(-2)> Global %\ |
iz appl e
quiz-cons @@ P> &P
P
B: |e (---) -0)
P:cons
B: (lambda (...) ...)
- —> appl e cons ;M
CH(1)_)a Eﬁ There's nore!" [< a
pple core
e
ﬁ P:cons
CF —> cons B: (lambda (...) ...)
P: mesg
B: (define ...) (cond ...)

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. This is not a special form, the given procedure is applied to the given arguments.
This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

appl e

Step 28
Evaluating: (1 anbda (nmesg) (define wasted 6) (cond ...))
\
CF(-2)> Global |
quiz-cons a—> apple
apple @@ b —> core
P:a,b
B: (let (...) ...) i
P: cons
B: (lambda (...) ...)
CF(-l)—>84>a e cons
Eﬁ There's nore!” ?& apple core
A P:cons
CF > cons — B: (lambda (...) ...)
P: mesg
P: mesg B: (define) (Cond)
B: (define ...) (cond ...)

"Ch! There's nore!"

W e evaluate the lambda special form aswe did before, drawing the bubble pair. Since thisis
the last expression to be evaluated in this procedure, the evaluation result becomes the return
value of the procedure. We will be moving back to the previous CF and finish evaluating the
procedure that this procedure was evaluated in.

Step 29

Resultzf

CF(-1)> Global| %\ |
quiz-cons iy e
quiz- @@ b—>core <
P:a,b
B: (let (...) ...)
P: cons
B: (lambda (...) ...)
CF>a > apple . : cons %
b —> Eﬁ! There's nore! @ apple core
¢\

P: cons
conSAT <<iﬁb<1 B: (lambda (...) ...)
P: mesg
P: mesg B: (define) (Cond)

B: (define ...) (cond ...)

apple "Ch! There's nore!"

After returning the result, we notice that this is the result of evaluating the last expression in
this procedure. This meansthisis also the result of evaluating this procedure.

Step 30

Evaluating: (define no-apple T)

CF —>{ Global %‘ |
quiz-cons b core”
iz P%;X; b —> core
_appl (e
no-apple B: (let(...)...)
P:cons

B: (lambda (...) ...)

—> a cons
—>

b Eﬁ! There's nore! ?CE apple core
A P:cons
conS‘T < i?i: B: (lambda (...) ...)

P: mesg

P: mesg B: (define) (Cond)
B: (define ...) (cond ...)

apple "Ch! There's nore!"

Now that we have evaluated the expression in the define special form, we bind the name no-apple
in the Current Frame to the result.

Step 31

appl e

Evaluating: (cdr (no-apple

'cons))

I¢

" Ch!

CF—> Global
quiz-cons >@@
apple A
P:a
- |)
no-appie B: (let (...) ...)
a4—>-a | e
Eﬁ There's nore!" <E£g>
P: cons
cons T W B: (lambda (...)
P: mesg
B: (define ...) (cond ...)

There's nore!"

P: cons

(lambda (...) ...)

cons

apple core

P: mesg

B: (define ..

.) (cond ...)

This expression is not a special form. Each sub-expression must be evaluated (in any order).

appl e

" Ch!

There's nore!"

Step 32
Evaluating: cdr Evaluating: (no-appl e ' cons)
#<pp: cdr>
CF —> Global |
quiz-cons a—> apple
aople :@db) b —>core <
- L a,
no-apple B: (let ())
P:cons
B: (lambda (...) ...)
a44>,98ﬁ|e ‘] cons
h —> ' There's nore! <}ix& apple core
P: cons H%@
cons B: (lambda (...) ...)
41 iﬁi: P:mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

To evaluate the name cdr, we must check the current frame, and find it because it is defined in

the Global Environment as a primitive procedure (a built in procedure).

| draw it as #<pp:cdr>.

The second expression is not a special form and each sub-expression must be evaluated (in any

order).

Step

33

Evaluating: no-appl e Evaluating: ' cons

cons
CF > Global |
iz- —> appl e
quiz-cons >@@ a
apple h —> core
no-apple Pra,b
B: (let (...) ...)
P: cons
A B: (lambda (...) ...)
a44>-98ﬁle .) cons
h —> ' There's nore! apple core
A
P: cons 4>$$
cons ‘W B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)

B: (define ...) (cond ...)

apple "Ch! There's nore!"

To evaluate the name no-apple, we check the current frame, find it, and use the result.
Evaluating 'cons returns the symbol cons.

Step 34

CJ: Evaluating: (f $) cons

mesg> cons | CF(-1)—> Global — \ |
quiz-cons >@® a appl e
apple o Y b —> core
.appl L a,
no-app'e B: (let (..) ...)
P: cons
A B: (lambda (...) ...)

~—>a cons

a "&II e 1 | n
b —> ' There's nore! apple core

A
P:cons
cons j B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)

B: (define ...) (cond ...)

apple "Ch! There's nore!"

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. This is not a special form, the given procedure is applied to the given arguments.
This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

Step 35

CF Evaluating: (define wasted 6)

1 Lsg
mesg> cons | CF(-1)>{ Global |

wasted = 6 iz a—> apple
i SR ‘@

P:a,b

no-apple '
PP B: (let (...) ...)
P: cons

A B: (lambda (...) ...)

cons

a—> | e %
h —> Eﬁ! There's nore! @ apple core
A

P: cons
cons T W B: (lambda (...) ...)

P: mesg
B: (define ...) (cond ...)

P: mesg
B: (define ...) (cond ...)

apple "Ch! There's nore!"

Define is a special form. We must evaluate the expression to find out what the name
quiz-cons will pointto. The 6 evaluates to the value 6. This result is then bound to the
name wasted in the Current Frame.

Step 36

For Steps 37 through 43, refer to the Environment Diagram in Step 36. They all look alike.

Evaluating: (cond ((eq? 'bark nesg) b) ...)
[

v
#<pp: eq?> €<—— bark ~—>cons

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'bark evaluates
to the symbol bark. The name mesg is found in the Current Frame and evaluates to cons.

Step 37

Evaluating: (cond ((m g m‘) b) ...)

> #f

#<pp:eq?> <—park > cons

Evaluating the primitive procedure €q? on the symbols bark and cons results in #f because
they are unequal. The result of #f in the cond expression causes us to move on to the next
conditional predicate and evaluate it.

Step 38

Evaluating: (cond ... ((eq? ‘vxpof mesg) a) ...)

v
#<pp: eq?> <— woof — > cons

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'woof evaluates
to the symbol woof. The name mesg is found in the Current Frame and evaluates to cons.

Step 39

Evaluating: (cond ... (() a) ...)
#<pp: eq?> f cons

WoO
Evaluating the primitive procedure eq? on the symbols woof and cons results in #f because
they are unequal. The result of #f in the cond expression causes us to move on to the next
conditional predicate and evaluate it.

Step 40

Evaluating: (cond ... ((eq? 'c‘ons mesg) cons) ...)

v
#<pp: eq?> <—— cons —— > cons

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'cons evaluates
to the symbol cons. The name mesg is found in the Current Frame and evaluates to cons.

Step 41

Evaluating: (cond ... ((3 @ m‘) cons) ...)

> #t

#<pp: €9?> <:ons ————>cons

Evaluating the primitive procedure eq? on the symbols cons and cons results in #t because
they are equal. The result of #tin the cond expression causes us to evaluate the clause

associated with this predicate.
Step 42

Evaluating: (cond ... (3 cons) ...)
‘I%
#t
apple "Ch! There's nore!"
To evaluate the name cons we look in the Current Frame, don't find it, and then look in the
frame pointed to by the Current Frame, and find it is equal to a paticular pair. Note that the
pair I'm drawing represents exactly the same pair, and is not a duplicate! Since this is the
last expression in the predicate, and the cond expression was the last expression in the
procedure, the result of the procedure is the result of evaluating the name cons in the
Current Frame, and we move the CF pointer back to the Global Environment and leave the

procedure. Step 43

Evaluati(ri(%&)—/—)"om There's nore! "
#<pp: cdr >

mesg > CONS CF—> Global |
wasted —> 6 iz- @@ a—> apple
quiz-cons
apple ; b —> core
P:a
no-apple ’
PP B: (let (...) ...)
P: cons
A B: (lambda (...) ...)
h —> ' There's nore! apple core
A
P: cons 4)98
cons T B: (lambda (...) ...)
P: mesg
) P: mesg B: (define ...) (cond ...)
\ B: (define ...) (cond ...)

apple "Ch! There's nore!”

Now that we have evaluated all of the expressions with this expression, we note that it isn't
a special form and evaluate the primitive procedure cdr on the given argument. The result,
"Oh! There's more!", is then returned to the user at the prompt because that's who evaluated it.

Step 44

Evaluating: (define ghastly (cons (apple 'bark) (no-apple 'woof)))

mesg > cCONs CF > Global \
wasted —> 6 iz- @@ a—> apple

quiz-cons

apple . b —> core

P:a
no-apple ’
PP B: (let (...) ...)
P:cons
A B: (lambda (...) ...)

~—>apple cons

a
h —> Eﬁ! There's nore! apple core

A
P:cons
cons j B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)

B: (define ...) (cond ...)
apple "Ch! There's nore!"

Define isaspecial form. We must evaluate the expression to find out what the name ghastly
will point to. That expression is made up of other expressions, so we need to evaluate them
first.

Step 45

Evaluating: cons Evaluating: (appl e ' bark) Evaluating: (no-appl e ' woof)

#<pp: cons> bar k
mesg > CONS CF—> Global |
wasted —> 6 iz- @@ a—> apple
quiz-cons
apple . b —> core
P:a
no-apple !
PP B: (let (...) ...)
P:cons
A B: (lambda (...) ...)

|e cons
There's nore!"

5_5%

apple core

A Y

P: cons

cons T W B: (lambda (...) ...)
P: mesg
B: (define ...) (cond ...)

P: mesg
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Evaluating the name cons, we find the primitive procedure cons. In order to evaluate the other
expressions, their sub expressions must be evaluated. The name apple evaluates to the procedure
it points to, and 'bark evaluates to the symbol bark. Note that we don't evalute the last expression
until we finish evaluating the one we've started on.

Step 46

Evaluating: (p o)
L> bar k
mesg>§)rés CF(-1)> Global %‘ |
wasted iz-)@é a appl e
quiz-cons
apple oY b —> core
no-apple B (Iét(...))
P: cons
A B: (lambda (...) ...)
p— e cons
CF b —> 'Eﬁ' There's nore!” apple core
mesg?’bark
A
] P: cons N
cons B: (lambda (...) ...)
T P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. This is not a special form, the given procedure is applied to the given arguments.
This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

Step 47

Evaluating: (define wasted 6)

mesg> cons | CF(-1)—> Global |
wasted > 6 . a—> appl e
quiz-cons >@(b a3 CgPe
apple
no-apple Pra, b
B: (let (...) ...)
P: cons
A B: (lambda (...) ...)
a —> appl e cons
C\LF b —> Eﬁl There's nore!” appl e core
mesg> bark E(E
A
wasted =6 | P: cons
cons T B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Define is a special form. We must evaluate the expression to find out what the name
quiz-cons will pointto. The 6 evaluates to the value 6. This result is then bound to the
name wasted in the Current Frame.

Step 48

For Steps 49 through 51, refer to the Environment Diagram in Step 48. They all look alike.

Evaluating: (cond ((eq? ‘bgrk mesg) b) ...)

v
#<pp: eq?> €<—— bark ~——> bark

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'bark evaluates
to the symbol bark. The name mesg is found in the Current Frame and evaluates to bark.

Step 49

Evaluating: (cond ((p 1 m‘) b) ...)

#<ppeq?> <—— 3k > hark

Evaluating the primitive procedure eq? on the symbols bark and bark results in #t because
they are equal. The result of #tin the cond expression causes us to evaluate the clause
associated with this predicate.

Step 50

Evaluating: (cond ... (@ b) ...)
;t L——>core

To evaluate the name b we look in the Current Frame, don't find it, and then look in the
frame pointed to by the Current Frame, and find it is equal to the symbol core. Since this is
the last expression in the predicate, and the cond expression was the last expression in the
procedure, the result of the procedure is the result of evaluating the name b in the

Current Frame, and we move the CF pointer back to the Global Environment and leave the
procedure.

Step 51
Evaluating: cons Evaluating: (appl e ' bark) Evaluating: (no-appl e ' woof)
#<pp: cons> core > woof
mesg? cons CF%M ‘
ted > 6 - —> appl e
waste g:;:ons >%Kb ﬁ;—>~¢8?e
P:a,b
- | !
no-apple B: (let (...) ...)
P:cons
A B: (lambda (...) ...)
> ggﬁle | . cons — |
b —> ' There's nore! apple core

P: mesg
B: (define ...) (cond ...)

1 P:cons
cons ‘1 <<ixb< B: (lambda (...) ...)
N

P: mesg

B: (define ...) (cond ...)
apple "Ch! There's nore!"

Now we need to evaluate the last expression. The name no-apple evalutes to the procedure it
points to, and 'woof evaluates to the symbol wolf.

Step 52

Evaluating: (T f)—> .

mesg> cons | CF(-1)> Global |
wasted —> 6 iz- @@ a—> apple
quiz-cons
apple ; h —> core
P:a
no-apple ’
CF PP B: (let (...) ...)
> bark P: cons
mesg < A T B: (lambda (...) ...)
h —> ' There's nore! apple core
mesg > bark
A
wasted > 6 | P: cons
cons T B: (lambda (...) ...)
P: mesg
p. mesg\ B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Now that each expression inside this expression has been evaluated, we can evaluate this
expression. This is not a special form, the given procedure is applied to the given arguments.
This creates a new frame that points to the frame the procedure called points to, and the
arguments are bound to the proper parameter names inside the frame. Now the CF pointer
is moved and the body of the procedure is evaluated.

Step 53

Evaluating: (define wasted 6)

mesg > CONS CF(-l)—) Global |
wasted —=> 6 iz. a—> apple
quiz-cons >@@ a "< CgPe
apple 5 A
no-apple - 8,
CF PP B: (let (...) ...)
> bar k P: cons
mesg < A B: (lambda (...) ...)
wasted —=> 6
a—> ggﬁl e ‘] cons
b —> I There's nore! apple core
mesg? bar k
wasted > 6 — A P: cons
cons T B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Define is a special form. We must evaluate the expression to find out what the name
quiz-cons will pointto. The 6 evaluates to the value 6. This result is then bound to the
name wasted in the Current Frame.

Step 54

For Steps 55 through 59, refer to the Environment Diagram in Step 54. They all look alike.

Evaluating: (cond ((eq? ‘bgrk mesg) b) ...)

v
#<pp: eq?> <—— bark ——> woof

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'bark evaluates
to the symbol bark. The name mesg is found in the Current Frame and evaluates to woof.

Step 55

Evaluating: (cond ((m g m‘) b) ...)

> #f

#<pp:eq?> <— 3k > woof

Evaluating the primitive procedure eq? on the symbols bark and woof results in #f because
they are unequal. The result of #f in the cond expression causes us to move on to the next
conditional predicate and evaluate it.

Step 56

Evaluating: (cond ... ((eq? ‘vxpof mesg) a) ...)

v
#<pp: eq?> <— woof ——— > woof

Cond is a special form, so first we need to evaluate the first conditional expression.

To evaluate it, we need to evaluate all of the parts. The name eq? follows the path of pointers
to frames from the Current Frame until the Global Environment (since it is undefined in all of
the frames inbetween), and is found to be a primitive procedure, #<pp:eq?>. 'woof evaluates
to the symbol woof. The name mesg is found in the Current Frame and evaluates to woof.

Step 57

Evaluating: (cond ... (() woof) ...)
\[i > #t
#<pp: eq?> f woof

WoO
Evaluating the primitive procedure eq? on the symbols woof and woof results in #t because
they are equal. The result of #tin the cond expression causes us to evaluate the clause
associated with this predicate.

Step 58

Evaluating: (cond .
$;)appl e

To evaluate the name a we look in the Current Frame, don't find it, and then look in the
frame pointed to by the Current Frame, and find it is equal to the symbol apple. Since this is
the last expression in the predicate, and the cond expression was the last expression in the
procedure, the result of the procedure is the result of evaluating the name a in the

Current Frame, and we move the CF pointer back to the Global Environment and leave the

procedure.
Step 59

Evaluating: ()
#<pp: cons> d % L) appl e

core
mesg > CONS CF—> Global | core apple
wasted —> 6 iz- @@ a—> apple
quiz-cons
apple . b —> core
P:a
no-apple ’
PP B: (let (...) ...)
> bark P: cons
mesg A B: (lambda (...) ...)
wasted —> 6
h —> ' There's nore! apple core
mesg > bark
wasted > 6 | 1 P: cons
cons T B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”
Now that each expression inside this expression has been evaluated, we can evaluate this

expression. The primitive procedure cons makes a pair who's first argument is the car and
the second is the cdr. (Note: no frames are made for primitve procedures.)

Step 60
Evaluating: (define ghastly m
K N
core apple
mesg > CONSs CF—>{Global |
wasted —> 6 iz- @@ a—> apple
quiz-cons
apple ; b —> core
P:a
- |)
v
mesg> bark . E: z:lonsbd e
. (lambda (...) ...
wasted —> 6
a—2> a&ql e cons
b—>"Cnh! There's nore!" apple core
mesg> bark
wasted ~> 6 | 1 P: cons
cons T B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

The expression in the define special form has been evaluated, now we create the name
ghastly in the current frame and make it point to the result of the evaluated expression.

Step 61

mesg > CONS
wasted —=> 6

. . _ | [
Evaluating: (set car! ghastly appl e))ﬁﬁ

#<pp: set - car! >€4

CF—> Global

mesg > bark
wasted —=> 6

quiz-cons

core

Y
appl e
]

apple
no-apple
ghastly

A

9

P:a,b

a
b

B: (let (...) ...)

: cons
 (lambda (...) ...)

mesg*)’bark
wasted —=> 6

a—>a

Eﬁle
b—>"0Ch! There's nore!”

cons

apple core

A

cons

apple "Ch!

P

P: mesg

P: cons

B: (define ...) (cond ...)

B: (lambda (...) ...)

P: mesg

B: (define ...) (cond ...)

There's nore!l™

This expression is not a special form, so we must evaluate all of the parts. The name set-car!
evaluates to the primitive procedure set-car!. The name ghastly evaluates to the pair it is points
to. The name apple evaluates to the procedure it points to.

Step 62

mesg > CONS
wasted —=> 6

#<pp: set-car! ><

Evaluating: (g 0 ?)

I

CF—> Global

mesg > bark
wasted —=> 6

quiz-cons

apple
no-apple
ghastly

A

: cons
 (lambda (...) ...)

mesg*)’bark
wasted —=> 6

a—>a

Eﬁle
b—>"0Ch! There's nore!”

cons

apple core

A

cons

apple "Ch!

C P

P: mesg

P: cons

B: (define ...) (cond ...)

B: (lambda (...) ...) l

P: mesg

B: (define ...) (cond ...)

There's nore!l™

Now that all of the expressions within this expression have been evaluated, we finish evaluating
the expression. The result of calling the primitive procedure set-car!, is to change the car of the
pair given as the second argument to the thing in the third argument.

Step 63

Ji
core
mesg > CONS CF > Global |
wasted —> 6 iz- a—> apple
quiz-cons >@@ a "< CgPe
apple
no-apple Pra,b
ghastly B (let(...)...)
mesg > bark P:cons
A B: (lambda (...) ...)
wasted —> 6
a—> ggﬁl e .) cons
b —> ' There's nore! apple core
mesg > bark
wasted > 6 | A P: cons
cons T B: (lambda (...) ...)
P: mesg
P: mesg B: (define ...) (cond ...)
B: (define ...) (cond ...)

apple "Ch! There's nore!”

Y ou are donel

Step 64

