Atoms, Pairs, and Pointers

An atom isn’t defined in standard Scheme, but it is a useful name to give any data
construct that is a single value (symbols, numbers, stringgcaelanvalues). Pairs and vectors
would not be atoms with this definition because they have ways of holding two or more elements.
It's important to know that inside Scheme, these single value entities are considered to be
equivalent if they look the same. Atoms are drawn with a box driiendata they represent.
(Sonretimes they are drawn without the box, but then they can be easily confused with variable
names.)

E ['a string"| [synmbol |

Figure 1: Atoms

A pair is a data type that allows us to point to two different objects (an object is any type
of data in Scheme). The constructor for a mains, takes two argumentthe first argument can
be retrieved from the created pair by the selemigrand the second can be retrieved by the
selectorcdr. It's important to notice that the pair does not actually contain the two objects inside
itself; the pair onlypoints to the different objects, just like a variable name isn’t actually the object
it represents, budointsto an object. This sullety becomes important when we talk about
mutators. A pointer is represented by an arrow pointing from the representation to the object
being represented. A pair is drawn as two boxes attached to each other with one arrow pointing
out of each box to the object it represents. (One problem with this picture is that you can't really
tell which side is which, thear or thecdr.)

L=l [d=>[2string]
QG

Figure 2: Pairs and atoms

When we draw a hame connected to an object, it's similardgair, except we don’t
have a box, but a name. The name is made with an arrow pointing from it to the object being
represented.

a-pair —>, pairs—[[F=>[| [J=>["2 string’]
@y o] (1]
an-x—>[X]
Figure 3: Named pairs and atoms

Mutators

When drawindgyox-n-pointerdiagramsmutatorsare those procedures which change
pointers in Scheme objects. Since atoms don’t have pointers, it should be clear that you can’t
mutate them. Names and pairs do have pointers, so you can mutate them (later you'll learn about
vectors which also contain pointers, so you can radketm). The standard way of designating a
mutatorin scheme is by putting an exclamation point after the name.

Themutatorfor names iset!. When you change a pointer, you can do one of two things,
erase the old arrow and draw a new arrow to the new object, or put two slashes over the old
arrow to signify it has been disconnected (or cutoff) and then draw a new arrow to the new
object. | will use the slash method. One thing to remember when connecting pointers to atoms is
that there only exists (conceptually) one instance of each unique atom in Scheme, so the correct
way to draw pointers a duplicated atom is to only draw the atom once and draw all of the pointers
to it. Whenever you create a non-atom, a new object is created, so a new one must be drawn
even if it looks identical to one already in the environment.

a-pair —>| a-pair —> a-pair —>|
] E]
an-x % an_x an- x X
StepO: Initial Environment Stepl: (set! an-x '‘an-x) Step2: (set! an-x a-pair)
/i
17
a—pairjﬁz% a-pair 4> %%I
; Figure 4: How set! changes
EI EI E name pointers.
an-x>[X] an- x an-x>[X] an- x
Step3: (set! a-pair an-x) Step4: (set! a-pair (cons 'a '()))

To change the pointers associated with pairs, there are the two consetasais and
set-cdr!. These change pointers just |#e! except their argument is a pair and not a name.

a-pair —> a-pair — < a-pair ’2%
[F10] 0] \ B0

pairs—>[[F->[| [>[S00 pairs—[[[F->[[]3>[0 pairs—[| TJ->{ [T F>[TT"]

Synbo Synbo [c] Synbo [c]

StepO: Initial Environment Stepl: (set-car! (cdr pairs)) Step2: (set-car! a-pair pairs)
a—pairyj%@ F1
xl EI : Figure 5: How set-car! and set-cdr! change a

pairs—[1] —I%L’l [string] pair's pointers. |

symbo [¢]
Step3: (set-cdr! (cdr pairs) (cons a-pair 'c))

Interpreting Scheme’s Text Representation of Pairs

When you display a structure made out of pairs in Scheme, it makes a text representation
and prints it on your screen. Although what is displayed doesn’t look like pairs, by following a
few simple rules, you can makdax-n-pointerdiagram out of any text representation. In fact,

when you use quote (of ¥) before one of these text representations, Scheme interpagid

builds the structure in its own memory.

Rule #1:
pair.
Rule #2:
a pair.
Rule #3:
they are in thedr of a pair.
Rule #4:

As an example, suppose we were given the following text representation of a bunch of
(csbla)). To show what part of

pairs and atomg54 (“string” (a . b) . 3) ()

Pairs are surrounded by parenthesis, unless they are pointed tatydha previous
All objects are displayed with their normal text representation when they are in the car of
All objects, ecept pairs or the empty listare displayed after a dot (or period) when

The empty list is omitted from being drawn if it is in td of a pair.

the expression is being evaluated, look at the arrow.

Step5: Must define the car, which is displayed.
(54 ("string" (a . b) . 3) () (cs6la))
A

Stepl: Make a pair because of parenthesis. | gion5: Myst define the car, which is displayed
(4\54 ("string" (a . b) . 3) () (cs6la)) p(‘r’f Catringr e o R (nglg)’)
[T
Step3: No dot or close parenthesis, must Step4: Must define the car, which is displayed.

be a pair. Make a pair because of parenthesis.
(54 (/I\"string" (a. b) . 3) () (cs6la)) (54 ("string" (a . b) . 3) () (cs6la))
™
1Y JAEEEN
E)

Step6: No dot or close parenthesis, must be a pair.
(54 ("string" (a . b) . 3) () (cs6la))
1

o e
Ftring] [T]

Step7: Must define the car, which is displayed.

Make a pair because of parenthesis.
(54 ("string" (a . b) . 3) () (cs6la))
»

D e
Fetring'] [T

Step8: Must define the car, which is displayed.
(54 ("string" (/?\. b) . 3) () (cs6la))

1 An empty list is displayed as parenthesis without anything in§jde#nd it is an atom.

o T
.
[a]

Step9: It's a dot, so the next element is not a
pair, and is displayed.
(54 ("string" (a;l\b) . 3) () (cs6la))

JAEyan

Ferrrng’] [T

Stepl0: We filled up the cdr and passed the

pair's corresponding close parenthesis.
(54 ("string" (a . bzl\' 3) () (csbla))

Fting] [T,
Stepll: It's a dot, so the next element is not a

pair, and is displayed.
(54 ("string" (a . b) ;]\3) () (csé6la))

JAEL AN
EFAE, 28
et [T,

Stepl2: We filled up the cdr and passed the

pair's corresponding close parenthesis.
(54 ("string" (a . b) . 3)4\() (cs61a))

JAEpAESE RN

ZAE=AN|
et [T

Stepl3: No dot or close parethesis, must be a
pair.
(54 ("string" (a . b) . 3) (%\ (cs61a))

|AEEAN
Feting] [T
Stepl4: Must de%le the car, which is displayed.

Be careful, this is the empty list not a pair.
(54 ("string" (a . b) . 3) () (cs61a))

Stepl5: No dot or close parethesis, must be a
air.
(54 ("pstring" (a. b)) . 3) () (4(\:561a))

JAEpA leem
l rr—»m

Stepl6: Must defme the car which is displayed.

Make a pair because of parenthesis.
(54 ("string" (a . b) . 3) () (/I\csﬁla))

AEpAERENERTAN
JTPLT o) [
oo [T

(o]

Stepl7: Must define the car, which is displayed.

(54 ("string" (a . b) . 3) () (csg\la))

AR AR NE Al
ST o) G
Fsting] [T4

Stepl8: A close parenthesis without a filled cdr.

Must be an empty list. Done with pair.
(54 ("string" (a . b) . 3) () (csGla)/IZ

ZlHleﬁhﬁH%
AR
Jzzlml

Stepl9: A close parenthesis without a filled cdr.

Must be an empty list. Done with pair.
(54 ("string" (a . b) . 3) () (csGla))/I\

AEpAERSNERAN|
TP 0] [T,
—m Tl ez [

Step20 We're done!
(54 ("string" (a . b) . 3) () (csGla))q\

