
Atoms, Pairs, and Pointers

An atom isn’t defined in standard Scheme, but it is a useful name to give any data
construct that is a single value (symbols, numbers, strings, and boolean values). Pairs and vectors
would not be atoms with this definition because they have ways of holding two or more elements.
It’s important to know that inside Scheme, these single value entities are considered to be
equivalent if they look the same. Atoms are drawn with a box around the data they represent.
(Sometimes they are drawn without the box, but then they can be easily confused with variable
names.)

A pair is a data type that allows us to point to two different objects (an object is any type
of data in Scheme). The constructor for a pair, cons, takes two arguments, the first argument can
be retrieved from the created pair by the selector car, and the second can be retrieved by the
selector cdr. It’s important to notice that the pair does not actually contain the two objects inside
itself; the pair only points to the different objects, just like a variable name isn’t actually the object
it represents, but points to an object. This subtlety becomes important when we talk about
mutators. A pointer is represented by an arrow pointing from the representation to the object
being represented. A pair is drawn as two boxes attached to each other with one arrow pointing
out of each box to the object it represents. (One problem with this picture is that you can’t really
tell which side is which, the car or the cdr.)

When we draw a name connected to an object, it’s similar to to a pair, except we don’t
have a box, but a name. The name is made with an arrow pointing from it to the object being
represented.

a () "a string" symbol

Figure 1: Atoms

"a string"

symbol

Figure 2: Pairs and atoms

a

c 13

()

Figure 3: Named pairs and atoms

a

a-pair pairs "a string"

symbol

c 13an-x x

()

Mutators

When drawing box-n-pointer diagrams, mutators are those procedures which change
pointers in Scheme objects. Since atoms don’t have pointers, it should be clear that you can’t
mutate them. Names and pairs do have pointers, so you can mutate them (later you’ll learn about
vectors which also contain pointers, so you can mutate them). The standard way of designating a
mutator in scheme is by putting an exclamation point after the name.

The mutator for names is set!. When you change a pointer, you can do one of two things,
erase the old arrow and draw a new arrow to the new object, or put two slashes over the old
arrow to signify it has been disconnected (or cutoff) and then draw a new arrow to the new
object. I will use the slash method. One thing to remember when connecting pointers to atoms is
that there only exists (conceptually) one instance of each unique atom in Scheme, so the correct
way to draw pointers a duplicated atom is to only draw the atom once and draw all of the pointers
to it. Whenever you create a non-atom, a new object is created, so a new one must be drawn
even if it looks identical to one already in the environment.

To change the pointers associated with pairs, there are the two commands set-car! and
set-cdr!. These change pointers just like set! except their argument is a pair and not a name.

Step0: Initial Environment

a ()

a-pair

an-x x

Step1: (set! an-x 'an-x)

a ()

a-pair

an-x x an-x

Step2: (set! an-x a-pair)

a ()

a-pair

an-x x an-x

Step3: (set! a-pair an-x)

a ()

a-pair

an-x x an-x

Step4: (set! a-pair (cons 'a '()))

a ()

a-pair

an-x x an-x

a ()

Figure 4: How set! changes
name pointers.

Step0: Initial Environment

a ()

a-pair

pairs "string"

symbol c

Step1: (set-car! (cdr pairs))

a ()

a-pair

pairs "string"

symbol c

Step2: (set-car! a-pair pairs)

a ()

a-pair

pairs "string"

symbol c

Step3: (set-cdr! (cdr pairs) (cons a-pair 'c))

a ()

a-pair

pairs "string"

symbol c

Figure 5: How set-car! and set-cdr! change a
 pair's pointers.

Interpreting Scheme’s Text Representation of Pairs

When you display a structure made out of pairs in Scheme, it makes a text representation
and prints it on your screen. Although what is displayed doesn’t look like pairs, by following a
few simple rules, you can make a box-n-pointer diagram out of any text representation. In fact,
when you use quote (or “‘ ”) before one of these text representations, Scheme interprets it and
builds the structure in its own memory.

Rule #1: Pairs are surrounded by parenthesis, unless they are pointed to by the cdr of a previous
pair.

Rule #2: All objects are displayed with their normal text representation when they are in the car of
a pair.

Rule #3: All objects, except pairs or the empty list1, are displayed after a dot (or period) when
they are in the cdr of a pair.

Rule #4: The empty list is omitted from being drawn if it is in the cdr of a pair.

As an example, suppose we were given the following text representation of a bunch of
pairs and atoms: (54 (“string” (a . b) . 3) () (cs61a)) . To show what part of
the expression is being evaluated, look at the arrow.

1 An empty list is displayed as parenthesis without anything inside “() ” and it is an atom.

(54 ("string" (a . b) . 3) () (cs61a))
 Step1: Make a pair because of parenthesis.

a ()

(54 ("string" (a . b) . 3) () (cs61a))
 Step2: Must define the car, which is displayed.

54

(54 ("string" (a . b) . 3) () (cs61a))

Step3: No dot or close parenthesis, must

54

(54 ("string" (a . b) . 3) () (cs61a))

Step4: Must define the car, which is displayed.

54

be a pair. Make a pair because of parenthesis.

(54 ("string" (a . b) . 3) () (cs61a))
Step5: Must define the car, which is displayed.

54

"string"

(54 ("string" (a . b) . 3) () (cs61a))
Step6: No dot or close parenthesis, must be a pair.

54

"string"

(54 ("string" (a . b) . 3) () (cs61a))

Step7: Must define the car, which is displayed.

54

"string"

Make a pair because of parenthesis. (54 ("string" (a . b) . 3) () (cs61a))
Step8: Must define the car, which is displayed.

54

"string"

a

(54 ("string" (a . b) . 3) () (cs61a))

Step9: It's a dot, so the next element is not a

54

"string"

a

pair, and is displayed.

b

(54 ("string" (a . b) . 3) () (cs61a))

Step10: We filled up the cdr and passed the

54

"string"

a b

pair's corresponding close parenthesis.

(54 ("string" (a . b) . 3) () (cs61a))

Step11: It's a dot, so the next element is not a

54

"string"

a b

pair, and is displayed.

3

(54 ("string" (a . b) . 3) () (cs61a))

Step12: We filled up the cdr and passed the

54

"string"

a b

pair's corresponding close parenthesis.

3

(54 ("string" (a . b) . 3) () (cs61a))

Step13: No dot or close parethesis, must be a

54

"string"

a b

pair.

3

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

Step14: Must define the car, which is displayed.
Be careful, this is the empty list not a pair.

()

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step15: No dot or close parethesis, must be a
pair.

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step16: Must define the car, which is displayed.
Make a pair because of parenthesis.

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step17: Must define the car, which is displayed.

cs61a

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step18: A close parenthesis without a filled cdr.

cs61a

Must be an empty list. Done with pair.

()

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step19: A close parenthesis without a filled cdr.

cs61a

Must be an empty list. Done with pair.

()

()

(54 ("string" (a . b) . 3) () (cs61a))

54

"string"

a b

3

()

Step20: We're done!

cs61a ()

()

