
Concurrency Diagrams

Introduction:
Concurrency is widely used in many new applications because of the usefulness of parallel

processing. Examples of concurrency can be found in preemptive multitasking systems, multiple
processor computers, and special networks of computers that work together to run a single
program (the NOW project here at UC Berkeley does this). The major obstacle encountered
when designing concurrent processes is synchronizing them so that they use the same data
without any conflicts.

Parallel Execution:
Our book, SICP (Structure and Interpretation of Computer Programs), goes over a

procedure called parallel-execute which takes as actual parameters any number of
procedures without formal parameters and evaluates them simultaneously along with the rest of
the expressions in the body that follow the parallel-execute procedure. To draw many procedures
being evaluated simultaneously, bubbles can be drawn around the procedures being evaluated and
they can be connected by an arrow flowing into each of them from the parallel-execute call. The
procedure prototype is:

(parallel-execute <p1> <p2> ... <pk>)

One way to visualize how
parallel-execute works is by
thinking of the main executing body as a
car driving down the road. The
parallel-execute procedure would
be a flag to the other procedures that
says “go” (or maybe a gun used at a
race). When the car gets to the
procedure, the flag is waved and the
other cars start moving and evaluating
their bodies. They all stop when their
bodies have finally been evaluated
independent of each other.

Page < 1 >
By Joshua Cantrell
jjc@cory.berkeley.edu

p1 p2 pk. . .

Source

continue
evaluating

source
expressions

. . .

S

p1

p2

pk

Each car continues until they
are done with evaluation.

. . .

S

p1

p2

pk

Source waves the flag starting
the other cars.

. . .

S

p1

p2

pk

Source drives down the street.

Problems With Concurrent Evaluation:
For procedures that aren't functional1, concurrent evaluation could cause some strange

side-effects. The most notable are those that involve mutators and accessing memory. If multiple
concurrently evaluated procedures use and mutate shared data, there is a possibility of changing
the data being used in the middle of a computation. An example is given below:

(let ((a 50))
 (let ((proc1 (lambda () (set! a 25)))
 (proc2 (lambda () (display (+ a a)))))
 (parallel-execute proc1

 proc2)))

What are all the numbers that might be displayed? There are three possibilities, 50, 75, and 100.
How can we figure these out through inspection? First we need to locate all of the mutators in
the given procedures. The mutators are the only expressions that can create the different
outcomes. Next we must locate all elements related to the various mutators. These make up the
different places that can be changed during evaluation. If multiple mutators appear in a
procedure, we must take into account that all of the expressions in a procedure work in serial, so
a set! found later in the procedure always occurs after the previous set!.

For an example, I'll make a slightly more complex example:

(let ((a 4)
 (b 3))
 (let ((proc1 (lambda () (set! a (+ a b))
 (display a))
 (proc2 (lambda () (set! b (* a b))
 (set! a 5)
 (display b))))
 (parallel-execute proc1

 proc2)))

Page < 2 >
By Joshua Cantrell
jjc@cory.berkeley.edu

1 Functional procedures are those that always return the same value given the same actual
parameters and result in no mutation.

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step1:
Layout all the sets of expressions being evaluated in parallel, and find
the mutators in those sets.

Page < 3 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step2:
Find the symbols or data related to the mutators that can be changed
in the middle of evaluation.

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step3:
Start calculating what the possible values are for each procedure by
finding all the possible values that could be calculated at the first 'set!'s.

a 7 b 12

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step4:

a 7 b 12

Recalculate the possible values of the 'set!'s by including the values the
other 'set!' could produce. Remember to make a note of what 'set!'s have
passed to give you those values.

a 16

proc2
1st set!

b 21

proc1
1st set!

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step5:

a 7 b 12a 16

proc2
1st set!

b 21

proc1
1st set!

Now move on to the next 'set!'s in each expression and write down all of
their possibilites. Don't forget to also categorize them under their correct
previous 'set!'s.

a 5 a 5

Page < 4 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step6:

a 7 b 12a 16

proc2
1st set!

b 21

proc1
1st set!

a 5 a 5

Recalculate all previous 'set!'s to reflect the chance that these new 'set!'s
occured first. Don't forget to categorize these to remember what happened.

a 17

proc2
2nd set!

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

Step7:

a 7 b 12a 16

proc2
1st set!

b 21

proc1
1st set!

a 5 a 5
a 17

proc2
2nd set!

If there were any more levels of 'set!'s, we'd continue the pattern and
continue building our list of possibilities. Since we've run out, we can
now calculate the possible outcomes that are displayed.

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

a 7 b 12a 16

proc2
1st set!

b 21

proc1
1st set!

a 5 a 5
a 17

proc2
2nd set!

a = 7 b = 21
a = 16
a = 17
a = 5

b = 12
b = 12
b = 21

a = 5 b = 12

Serializers:
If we were to give each procedure to another computer or microprocessor to be operated

on, we can see our process could finish faster than if we only evaluated them one at a time. The
problem is that they might all share the same data and we can’t have them blindly reading and
changing the data simultaneously, or we’ll get random results all dependent on who did what first
(or possibly last). This need to protect data from being tampered with indiscriminately causes the
creation of serializers which keep certain procedures from being executed simultaneously.

SICP gives us the constructor make-serializer to create serializers which can be used
on procedures to ensure they aren’t executed simultaneously. The serializers made by
make-serializer are evaluated on procedures making them serialized by the particular
serializer. Procedures serialized by the same serializer cannot be evaluated simultaneously, but
those serialized by different serializers can be evaluated simultaneously. Whenever we serialize a
procedure, we should draw a box around it and label it with a serializer. Note that a procedure
can be serialized by multiple serializers.

The above picture can be made with the following expressions using SICP’s concurrency
procedures (given that all the procedures are defined and have no parameters):

(define S1 (make-serializer))
(define S2 (make-serializer))
(define S3 (make-serializer))
(parallel-execute
 (lambda () ((s2 p1))
 ((s1 (s3 p2)))
 (p3))
 (s1 p4)
 (s2 (lambda () (p5)
 (parallel-execute
 (s1 p6)
 (s3 p7)))))

Remembering that anything not sharing the same serializer can be computed
simultaneously, we can see that procedures 5, 6, and 7 cannot be evaluated at the same time as 1.
We can also see that procedure 2, 4, and 6 cannot be evaluated simultaneously. Note that
procedure 3 can be evaluated simultaneously with any of the procedures.

Page < 5 >
By Joshua Cantrell
jjc@cory.berkeley.edu

p1

Source

p2
p4

p5

p3

p6

S1

p7

S1

S2

S1 S3
S3

S2

Serializers and Evaluation
In the step-by-step case shown above, there were no serialized procedures, so what if it

did contain serialized procedures? How would that change the number of possibilities? Let’s
rewrite the expression and serialize portions of it:

(let ((a 4)
 (b 3)
 (s (make-serializer)))
 (let ((proc1 (lambda () (set! a ((s (lambda () (+ a b)))))
 (display a))
 (proc2 (lambda () ((s (lambda () (set! b (* a b))
 (set! a 5))))
 (display b))))
 (parallel-execute proc1
 proc2)))

What might this look like if we drew a diagram?

The only difference between the solution for this expression and the previous step-by-step
solution is that parts of the procedures have been serialized. It should be noted that the serialized
expressions cannot be evaluated simultaneously, so the number of possible results goes down.

I leave the solution of this problem for you to do in your spare time. The end result
should look something like:

Page < 6 >
By Joshua Cantrell
jjc@cory.berkeley.edu

(set! b (* a b))

(set! a)

Source

(display a)

(+ a b)
S

(set! a 5)S

(display b)

(set! a (+ a b))
(display a)

(set! b (* a b))
(set! a 5)
(display b)

proc1 proc2

a 7 b 12 b 21

proc1
1st set!

a 5 a 5

proc2
2nd set!

a = 7 b = 21
a = 17
a = 5
a = 5

b = 12
b = 21
b = 12

a 17

Deadlock:
There is one problem that can occur with serialization. Since it takes time to serialize

something, it is possible that one procedure locks up one serializer and then finds its second
serializer already locked. Let’s say in this case, that a second serializer had just locked up that
second serializer and its second serializer was the other procedure’s first, so it locks up. Now we
have a problem called deadlock.

We are saved from deadlock by various methods of avoiding it or backing out of the
sticky situation. The book describes how procedures can be given priority over each other, and
the procedure with the lower priority would back out so that the higher priority procedure could
continue. Another way to avoid this predicament would be to serialize any possible places of
deadlock. Since the technique used to avoid deadlock depends on the situation, you should be
ready to choose from a variety of solutions rather than always using a single solution.

The Essence of a Serializer:
At its lowest level, a serializer is something that checks a flag in memory to see if

evaluation can continue. If the flag is set so that evaluation is stalled, it waits until the flag says
evaluation can continue, and then sets the flag. Setting the flag stops other processes that use the
same serializer from evaluating until it finishes and resets the flag. In some programming circles,
this flag is called a semaphore. The most important feature of checking and setting the flag is to
insure that a process cannot check the flag if it going to be set by another process. This means
that these two operations (checking and setting) must happen together without any interruption of
concurrent processes. The operating system, computer architecture, or interpreter normally has
some mechanism to do both without interruption, so when making your own serializer, you
should look for the provided semaphore support.

Page < 7 >
By Joshua Cantrell
jjc@cory.berkeley.edu

p1

Source

p2

S1
S2 S1

S2

A situation where deadlock can occur.

