
MUTABLE LISTS AND DICTIONARIES 8
COMPUTER SCIENCE 61A

July 12, 2012

1 Lists

The Python list is a data structure very similar to a tuple: the primary difference is that
lists are mutable and tuples are not. Mutability lets us create a data structure that we can
update on the go, rather than having to recreate the data structure every time we want to
make a change, as we did with tuples.

Constructing a list is very similar to constructing tuples, except that instead of parenthe-
ses, we use square brackets.

>>> empty_list = list()
>>> empty_list
[]
>>> x = [3, 4, 5, ‘hello’] #constructs a 4 element list
>>> x[2] #selects the 2nd index
5

Mutation occurs when we perform assignment after selecting an index:

>>> x[2] = ’CHANGED’
>>> x
[3, 4, ‘CHANGED’, ‘hello’]

With tuples, the assignment to x[2] would have failed.

We can also mutate multiple elements of a list at once, using the slice assignment. For
instance:

>>> mynums = [2, 4, 8, 10]
>>> mynums2 = [’four’, ’eight’, ’ten’]

1

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 2
>>> mynums[1:] = mynums2
>>> mynums
[2, ’four’, ’eight’, ’ten’]

We can even use the map function in this manner:

>>> mynums = [2, 4, 8, 11]
>>> mynums[1:] = map(lambda x: 2*x, mynums[1:])
>>> mynums
[2, 8, 16, 22]

As a neat little trick, we can check quickly in an if statement whether a tuple is empty:

>>> x = tuple()
>>> if x:
... print(‘I’m empty!’)
>>> if not x:
... print(‘But I still exist!’)
But I still exist!

We can check if a list is empty in the same way.

1.1 Questions

For the following questions, you will define a function that deals with tuples, and then
define a similar function that deals with mutable lists.

1. Define append tup(tup1, tup2) that returns a tuple with the elements of tup2
appended to tup1.

def append_tup(tup1, tup2):

Solution:

return tup1 + tup2

2. Now define append lst(lst1, lst2) that returns lst2 appended to the end of
lst1, using list mutation.

For example,

>>> x = [1,2,3,4]
>>> y = [5,6,7,8]
>>> append_mut(x, y)
[1,2,3,4,5,6,7,8]

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 3
>>> x
[1,2,3,4,5,6,7,8]

def append_mut(lst1, lst2):

Solution:

lst1[:] = lst1 + lst2
return lst1

Try the rest of the questions recursively.

3. Define filter tup(pred, tup) that returns a tuple with elements that do not sat-
isfy pred filtered out.

def filter_tup(pred, tup):

Solution:

if tup == ():
return tup

if pred(tup[0]):
return (tup[0],) + filter_tup(pred, tup[1:])

return filter_tup(pred, tup[1:])

4. Define filter mut(pred, lst) that filters the elements out of lst, using list muta-
tion.

def filter_mut(pred, lst):

Solution:

if not lst:
return lst

elif not pred(lst[0]):
lst[1:] = filter_lst(pred, lst[1:])
lst.pop(0)
return lst

else:
lst[1:] = filter_lst(pred, lst[1:])
return lst

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 4

or, without using .pop:

def filter_mut(pred, lst):
if not lst:

return lst
elif not pred(lst[0]):

lst[:] = filter_lst(pred, lst[1:])
return lst

else:
lst[1:] = filter_lst(pred, lst[1:])
return lst

5. Define map tup(fn, tup).

def map_tup(fn, tup):

Solution:

if tup == ():
return ()

return (fn(tup[0]),) + map_tup(fn, tup[1:])

6. Define map mut(fn, lst), using list mutation.

def map_mut(fn, lst):

Solution:

if not lst:
return lst

else:
lst[0] = fn(lst[0])
lst[1:] = map_mut(fn, lst[1:])
return lst

7. Define interleave tup(tup1, tup2) which returns the elements of tup1 and
tup2 interleaved.

def interleave_tup(tup1, tup2):

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 5

Solution:

if tup1 == ():
return tup2

elif tup2 == ():
return tup1

else:
return tup1[0] + interleave_tup(tup2, tup1)

8. Define interleave mut(lst1, lst2) which returns the elements of lst1 and lst2
interleaved, using list mutation. lst1 should be mutated after the call. The value of
lst2 is not important.

def interleave_mut(lst1, lst2):

Solution:

if not lst1:
lst1[:] = lst2
return lst1

elif not lst2:
return lst1

else:
lst1[1:] = interleave_mut(lst2, lst1[1:])
return lst1

2 List Comprehension

If we want a quick way to create a new list from a given sequence, we can use something
called list comprehension. The syntax is as follows:

[<map expression> for <name> in <sequence>]

This will take an expression and a sequence, apply the function to every item in the se-
quence, and then create a list out of the result. Be careful! We’re not passing in a function
to the map expression, but rather something that evaluates to a value, like x ∗ 2. We can
also add a filter at the end:

[<map expression> for <name> in <sequence> if <filter expression>]

This is saying perform the map expression on every element in the sequence that satisfies

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 6
the filter expression. In other words, the filter expression comes before the map expres-
sion.

1. What would Python do?

>>> seq = range(10)
>>> x = [x * x for x in seq]
>>> x

Solution:

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

>>> [elem+1 for elem in x if elem % 2 == 0]

Solution:

[1, 5, 17, 37, 65]

3 Dictionaries

A mapping from keys to values is a very useful data structure in Computer Science. We
have built IDicts out of tuples and defined selectors for our data type. Python has a built-
in mapping, called a dictionary (or dict). Unlike the immutable IDict, the Python dict
is mutable. We construct and use built-in Python dictionaries as follows:

>>> empty_dictionary = dict()
>>> empty_dictionary
{}
>>> dict = {‘some_key’: 1234, ‘another_key’: 8383, 28312: 1111}
>>> dict[‘some_key’]
1234
>>> dict[28312]
1111
>>> dict[‘non_existant_key’]
Traceback... KeyError: ‘non_existant_key’

Note the use of curly braces, { }, to create the dictionary. We put key-value pairs in the
form of key: value, and we use commas to separate each key value pair. To look up the
value of a key, we use [] to index, similar to how we indexed into lists and tuples.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 7
Also, notice how we were able to use both strings and numbers as keys. In fact, any
immutable data type can be used as a key! This means that strings, numbers, tuples, and
even functions could be used as keys into a dictionary. This also means that lists cannot
be used as keys.

We can also modify the dict using the following syntax:

>>> dict[‘some_new_key’] = 5
>>> dict[‘some_new_key’]
5
>>> dict[‘some_new_key’] = 123123
>>> dict[‘some_new_key’]
123123

Notice how we were first able to define a new key-value mapping, and then also change
the key-value mapping.

It turns out that the IDict methods we provided you are similar to ones that Python has
built-in for its own dictionaries. For example, Python dictionaries have a keys method
that will return a sequence of keys.

1. Write make inverse dict(dict) that returns a new dictionary with the ‘inverse’
mapping. The ‘inverse’ mapping of a dictionary d is a new dictionary that maps each
of d’s values to all keys in d that mapped to it. For instance,

>>> d1 = {‘hope’: 3, ‘love’: 2, ‘pants’: 3}
>>> d2 = make_inverse_dict(d1)
>>> d2 #note that we know nothing about the order of dictionaries
{3: (‘hope’, ‘pants’), 2: (‘love’,)}

The ordering of the tuple of keys doesn’t matter, i.e., d2 could have instead been 3:
(‘pants’, ‘hope’), 2: (‘love’,).

def make_inverse_dict(dict):

Solution:

inverse = {}
for key in dict.keys():

val = dict[key]
if val in inverse:

inverse[val] = inverse[val] + (key,)
else:

inverse[val] = (key,)
return inverse

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 8: MUTABLE LISTS AND DICTIONARIES Page 8
One more thing to keep in mind: dictionaries are unordered, meaning that you can never
make any assumptions about the order in which keys or values are stored in Python
dictionaries.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

