
LOGIC PROGRAMMING 14
COMPUTER SCIENCE 61A

August 2, 2012

1 Introduction

Over the semester, we have been using imperative programming – a programming style
where code is written as a set of instructions for the computer. In this section, we intro-
duce declarative programming – code that declares what we want, not how to do it. Logic
programming (what we are learning) is a type of declarative programming.

In this class, we will be using Pygic, designed to use syntax similar to the Python lan-
guage.

NOTE: if you have not done Lab 14, do it as soon as possible! The best way to learn logic
programming is to play around with it!

2 Facts

In Pygic, you can define facts and rules. Here’s an example of a fact:

P?> fact sells(supermarket, groceries)

This line of code says: “This is a fact: supermarkets sell groceries”. When we declare
something as a fact, we are simply saying that it is a true statement.

“sells” is a quality that relates two things, “supermarket” and “groceries.” What are the
values of “supermarket” and “groceries”? They have no values! They are symbols – sym-
bols are Pygic’s primitives.

Now that we have defined facts, we can check if a statement is correct:

1

DISCUSSION 14: LOGIC PROGRAMMING Page 2
P?> sells(supermarket, cars)
No.
P?> sells(school, groceries)
No.
P?> sells(supermarket, groceries)
Yes.

Having defined some facts, we can make queries – in other words, we can ask Pygic for
information:

P?> sells(supermarket, ?stuff)
Yes.
?stuff = groceries

The query above is equivalent to asking “What do supermarkets sell?” Pygic replies that
supermarkets sell groceries, based on the previously defined fact.

?stuff is a variable in Pygic, whereas supermarket is a symbol (a primitive). supermarket
is always going to be supermarket, but ?stuff is unknown – it is only after the query
that we know what the value of ?stuff is.

A similar query is

P?> sells(?place, groceries)
Yes.
?place = supermarket

which is equivalent to asking “Which places sell groceries?” Once again, Pygic replies
based on the previously defined fact.

We can also query both parameters:

P?> sells(?place, ?stuff)
Yes.
?place = supermarkets
?stuff = groceries

This is equivalent to asking “What are places that sell stuff, and what stuff do they sell?”
Pygic will tell you what each variable should be.

2.1 Questions

1. Write a fact that checks if two elements are equal.

Solution:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 14: LOGIC PROGRAMMING Page 3

fact equal(?x, ?x)

2. Define a set of facts for a “mall,” which has the following qualities:

• malls sell shoes and clothes

• malls are larger than supermarkets

• malls are popular

Solution:

fact sells(mall, shoes)
fact sells(mall, clothes)
fact larger(mall, supermarkets)
fact popular(mall)

3 Lists

Lists are Pygic’s built-in data structure. The syntax for a list is the following:

<1, 2, 3, 4>

We can use lists in facts and rules:

P?> fact append(<1, 2>, <3, 4>, <1, 2, 3, 4>)

This is equivalent to saying “appending <1, 2>and <3, 4>will result in <1, 2, 3, 4>”.

You can split lists by using the | operator. For example:

P?> fact combined(?x, ?y, <?x | ?y>)
Yes.
P?> combined(3, <2, 1>, ?result)
Yes.
?result = <3, 2, 1>

4 Rules

Pygic also has “rules,” which are just more complex facts. For example:

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 14: LOGIC PROGRAMMING Page 4
P?> rule sells_same(?store1, ?store2):

sells(?store1, ?item)
sells(?store2, ?item)

The idea of a rule is the following:

rule ‘‘conclusion’’:
‘‘hypothesis1’’
‘‘hypothesis2’’
etc.

This is equivalent to saying “the conclusion is true if all the hypotheses are true.” If even
one of the hypotheses is false, the conclusion will also be false.

For example, the sells same rule is equivalent to saying “store1 and store2 sell the
same thing if store1 sells item and store2 also sells item.”

You can perform fact-checking with rules, just like with facts:

P?> fact sells(farmers_market, groceries)
Yes.
P?> fact sells(starbucks, coffee)
Yes.
P?> sells_same(supermarket, farmers_market)
Yes.
P?> sells_same(supermarket, starbucks)
No.

We can also do querying:

P?> sells_same(?store, supermarket)
Yes.
?store = farmers_market

This is equivalent to asking “what store sells the same thing as a supermarket?”

We can also ask “what stores sell the same thing?”

P?> sells_same(?store1, ?store2)
Yes.
?store1 = supermarket
?store2 = supermarket

That’s pretty obvious, but it is true nonetheless. Are there any other matches?

P?> more?
Yes.

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 14: LOGIC PROGRAMMING Page 5
?store1 = farmers_market
?store2 = supermarket

We use the more? command to ask Pygic if there are any more matches that satisfy the
query. If there are, Pygic automatically returns the next match. If not, Pygic will return
“No.”

4.1 Questions

1. Write facts and rules for every other, a relation between two lists that is satisfied
if and only if the second list is the same as the first list, but with every other element
removed.

P?> every_other(<frodo, merry, sam, pippin>, ?x)
Yes.
?x = <frodo, sam>
P?> every-other(<gandalf>, ?x)
Yes.
?x = <gandalf>

Solution:

fact every_other(<>, <>)
fact every_other(<?x>, <?x>)
rule every_other(<?a, ?b | ?l_rest>, <?a | ?r_rest):

ever_other(?l_rest, ?r_rest)

2. Write rules for prefix, a relation between two lists that is satisfied if and only if
elements of the first list are the first elements of the second list, in order.

P?> prefix(<being, for, the>, <being, for, the,
benefit, of, mister, kite>)

Yes.
P?> prefix(<for, no, one>, <for, no, one>)
Yes.
P?> prefix(<>, <got, to, get, you, into, my, life>)
Yes.
P?> prefix(<want, i, to>, <i, want, to, hold, your, hand>)
No.
P?> prefix(<to, hold, your>, <i, want, to, hold, your, hand>)
No.
P?> prefix(<i, want, to, tell, you>, <i, want, to>)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 14: LOGIC PROGRAMMING Page 6
No.

Solution:

fact prefix(<>, ?any)
rule prefix(<?first | ?small>, <?first | ?big>):

prefix(?small, ?big)

3. Write facts and rules for sublist, a relation between two lists that is satisfied if and
only if the first is a consecutive sublist of the second. For example:

P?> sublist(<give>, <never, gonna, give, you, up>)
Yes.
P?> sublist(<you, up>, <never, gonna, give, you, up>)
Yes.
P?> sublist(<never, gonna, give>, <never, gonna, give, you, up>)
Yes.
P?> sublist(<>, <never, gonna, give, you, up>)
Yes.
P?> sublist(<never, give, up>, <never, gonna, give, you, up>)
No.
P?> sublist(<let, you, down>, <never, gonna, give, you, up>)
No.

Hint: You will want to use the prefix rule that you previously defined.

Solution:

rule sublist(?a, ?b):
prefix(?a, ?b)

rule sublist(?sub, <?first | ?rest>):
sublist(?sub, ?rest)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

DISCUSSION 14: LOGIC PROGRAMMING Page 7
4. Write a set of rules to implement the subs relation with components old, new, input,

and output. The first two are symbols; the last two can be symbols or lists. The out-
put should be the same as the input except that every appearance of old is replaced
by new.

P?> subs(romeo, fred, <romeo, oh, romeo, why, art, thou, romeo>, ?x)
Yes.
?x = <fred, oh, fred, why, art, thou, fred>

Solution:

fact subs(_, _, <>, <>)
rule subs(?old, ?new, <?old | ?rest1>, <?new | ?rest2>):

subs(?old, ?new, ?rest1, ?rest2)
rule subs(?old, ?new, <?x | ?rest1>, <?x | ?rest2>):

subs(?old, ?new, ?rest1, ?rest2)
rule subs(?old, ?new, <?first1 | ?rest1>, <?first2 | ?rest2>):

subs(?old, ?new, ?first1, ?first2)
subs(?old, ?new, ?rest1, ?rest2)

CS61A Summer 2012: Tom Magrino and Jon Kotker, with
Joy Jeng, Eric Kim, Stephen Martinis, Allen Nguyen, Steven Tang, Albert Wu

