Chapter 2: Building Abstractions with Data

Contents

2.1 Introduction 1

2.2 Data Abstraction 1
 2.2.1 Example: Arithmetic on Rational Numbers 2
 2.2.2 Tuples 3
 2.2.3 Abstraction Barriers 5
 2.2.4 The Properties of Data 5

2.3 Sequences 6
 2.3.1 Tuples Again 7
 2.3.2 Sequence Iteration 7
 2.3.3 Sequence Abstraction 9
 2.3.4 Strings 10
 2.3.5 Conventional Interfaces 12

2.4 Immutable Data Structures 14
 2.4.1 Nested Pairs 15
 2.4.2 Recursive Lists 15
 2.4.3 Dictionaries 18
 2.4.4 Hierarchical Structures 19

2.1 Introduction

We concentrated in Chapter 1 on computational processes and on the role of functions in program design. We saw how to use primitive data (numbers) and primitive operations (arithmetic operations), how to form compound functions through composition and control, and how to create functional abstractions by giving names to processes. We also saw that higher-order functions enhance the power of our language by enabling us to manipulate, and thereby to reason, in terms of general methods of computation. This is much of the essence of programming.

This chapter focuses on data. Data allow us to represent and manipulate information about the world using the computational tools we have acquired so far. Programs without data structures may suffice for exploring mathematical properties. But real-world phenomena, such as documents, relationships, cities, and weather patterns, all have complex structure that is best represented using compound data types. With structured data, programs can simulate and reason about virtually any domain of human knowledge and experience. Thanks to the explosive growth of the Internet, a vast amount of structured information about the world is freely available to us all online.

2.2 Data Abstraction

As we consider the wide set of things in the world that we would like to represent in our programs, we find that most of them have compound structure. A date has a year, a month, and a day; a geographic position has a latitude and a longitude. To represent positions, we would like our programming language to have the capacity to “glue together” a latitude and longitude to form a pair --- a compound data value --- that our programs could manipulate.
in a way that would be consistent with the fact that we regard a position as a single conceptual unit, which has two parts.

The use of compound data also enables us to increase the modularity of our programs. If we can manipulate geographic positions directly as objects in their own right, then we can separate the part of our program that deals with values per se from the details of how those values may be represented. The general technique of isolating the parts of a program that deal with how data are represented from the parts of a program that deal with how those data are manipulated is a powerful design methodology called *data abstraction*. Data abstraction makes programs much easier to design, maintain, and modify.

Data abstraction is similar in character to functional abstraction. When we create a functional abstraction, the details of how a function is implemented can be suppressed, and the particular function itself can be replaced by any other function with the same overall behavior. In other words, we can make an abstraction that separates the way the function is used from the details of how the function is implemented. Analogously, data abstraction is a methodology that enables us to isolate how a compound data object is used from the details of how it is constructed.

The basic idea of data abstraction is to structure programs so that they operate on abstract data. That is, our programs should use data in such a way as to make as few assumptions about the data as possible. At the same time, a concrete data representation is defined, independently of the programs that use the data. The interface between these two parts of our system will be a set of functions, called selectors and constructors, that implement the abstract data in terms of the concrete representation. To illustrate this technique, we will consider how to design a set of functions for manipulating rational numbers.

As you read the next few sections, keep in mind that most Python code written today uses very high-level abstract data types that are built into the language, like classes, dictionaries, and lists. Since we’re building up an understanding of how these abstractions work, we can’t use them yet ourselves. As a consequence, we will write some code that isn’t Pythonic --- it’s not necessarily the typical way to implement our ideas in the language. What we write is instructive, however, because it demonstrates how these abstractions can be constructed! Remember that computer science isn’t just about learning to use programming languages, but also learning how they work.

2.2.1 Example: Arithmetic on Rational Numbers

Recall that a rational number is a ratio of integers, and rational numbers constitute an important sub-class of real numbers. A rational number like \(\frac{1}{3} \) or \(\frac{17}{29} \) is typically written as:

\[
\text{<numerator>}/\text{<denominator>}
\]

where both the `<numerator>` and `<denominator>` are placeholders for integer values. Both parts are needed to exactly characterize the value of the rational number.

Rational numbers are important in computer science because they, like integers, can be represented exactly. Irrational numbers (like \(\pi \) or \(e \) or \(\sqrt{2} \)) are instead approximated using a finite binary expansion. Thus, working with rational numbers should, in principle, allow us to avoid approximation errors in our arithmetic.

However, as soon as we actually divide the numerator by the denominator, we can be left with a truncated decimal approximation (a float):

```python
>>> 1/3
0.3333333333333333
```

and the problems with this approximation appear when we start to conduct tests:

```python
>>> 1/3 == 0.333333333333333300000 # Beware of approximations
True
```

How computers approximate real numbers with finite-length decimal expansions is a topic for another class. The important idea here is that by representing rational numbers as ratios of integers, we avoid the approximation problem entirely. Hence, we would like to keep the numerator and denominator separate for the sake of precision, but treat them as a single unit.

We now from using functional abstractions that we can start programming productively before we have an implementation of some parts of our program. Let us begin by assuming that we already have a way of constructing a rational number from a numerator and a denominator, available as a *constructor*. We also assume that, given a rational number, we have ways of extracting (or selecting) its numerator and its denominator, available as *selectors*. The constructor and selectors can be the following three functions:
• **make_rat**(n, d) returns the rational number with numerator n and denominator d.

• **numer**(x) returns the numerator of the rational number x.

• **denom**(x) returns the denominator of the rational number x.

We are using here a powerful strategy of synthesis: *wishful thinking*. We haven’t yet said how a rational number is represented, or how the functions *numer*, *denom*, and *make_rat* should be implemented. Even so, if we did have these three functions, we could then add, multiply, and test equality of rational numbers by calling them:

```python
>>> def add_rat(x, y):
    nx, dx = numer(x), denom(x)
    ny, dy = numer(y), denom(y)
    return make_rat(nx * dy + ny * dx, dx * dy)
```

```python
>>> def mul_rat(x, y):
    return make_rat(numer(x) * numer(y), denom(x) * denom(y))
```

```python
>>> def eq_rat(x, y):
    return numer(x) * denom(y) == numer(y) * denom(x)
```

Now we have the operations on rational numbers defined in terms of the selector functions *numer* and *denom*, and the constructor function *make_rat*, but we haven’t yet defined these functions. What we need is some way to glue together a numerator and a denominator into a unit.

2.2.2 Tuples

To enable us to implement the concrete level of our data abstraction, Python provides a compound structure called a *tuple*, which can be constructed by separating values by commas. Although not strictly required, parentheses almost always surround tuples.

```python
>>> (1, 2)
(1, 2)
```

The elements of a tuple can be *unpacked* in two ways. The first way is via our familiar method of multiple assignment.

```python
>>> pair = (1, 2)
>>> pair
(1, 2)
>>> x, y = pair
>>> x
1
>>> y
2
```

In fact, multiple assignment has been creating and unpacking tuples all along. A second method for accessing the elements in a tuple is by the indexing operator, written as square brackets.

```python
>>> pair[0]
1
>>> pair[1]
2
```

Tuples in Python (and sequences in most other programming languages) are 0-indexed, meaning that the index 0 picks out the first element, index 1 picks out the second, and so on. One intuition that underlies this indexing convention is that the index represents how far an element is offset from the beginning of the tuple.

The equivalent function for the element selection operator is called *getitem*, and it also uses 0-indexed positions to select elements from a tuple.
Tuples are native types, which means that there are built-in Python operators to manipulate them. We’ll return to the full properties of tuples shortly. At present, we are only interested in how tuples can serve as the glue that implements abstract data types.

Representing Rational Numbers. Tuples offer a natural way to implement rational numbers as a pair of two integers: a numerator and a denominator. We can implement our constructor and selector functions for rational numbers by manipulating 2-element tuples.

```python
>>> def make_rat(n, d):
    return (n, d)

>>> def numer(x):
    return getitem(x, 0)

>>> def denom(x):
    return getitem(x, 1)
```

A function for printing rational numbers completes our implementation of this abstract data type.

```python
>>> def str_rat(x):
    return '{0}/{1}'.format(numer(x), denom(x))
```

Together with the arithmetic operations we defined earlier, we can manipulate rational numbers with the functions we have defined.

```python
>>> half = make_rat(1, 2)
>>> str_rat(half)
'1/2'

>>> third = make_rat(1, 3)
>>> str_rat(mul_rat(half, third))
'1/6'

>>> str_rat(add_rat(third, third))
'6/9'
```

As the final example shows, our rational-number implementation does not reduce rational numbers to lowest terms. We can remedy this by changing `make_rat`. If we have a function for computing the greatest common denominator of two integers, we can use it to reduce the numerator and the denominator to lowest terms before constructing the pair. As with many useful tools, such a function already exists in the Python Library.

```python
>>> from fractions import gcd

>>> def make_rat(n, d):
    g = gcd(n, d)
    return (n//g, d//g)
```

The double slash operator, `//`, expresses integer division, which rounds down the fractional part of the result of division. Since we know that \(g \) divides both \(n \) and \(d \) evenly, integer division is exact in this case. Now we have

```python
>>> str_rat(add_rat(third, third))
'2/3'
```

as desired. This modification was accomplished by changing the constructor without changing any of the functions that implement the actual arithmetic operations.

Further reading. The `str_rat` implementation above uses *format strings*, which contain placeholders for values. The details of how to use format strings and the `format` method appear in the *formatting strings* section of *Dive Into Python 3*.

4
2.2.3 Abstraction Barriers

Before continuing with more examples of compound data and data abstraction, let us consider some of the issues raised by the rational number example. We defined operations in terms of a constructor `make_rat` and selectors `numer` and `denom`. In general, the underlying idea of data abstraction is to identify for each type of value a basic set of operations in terms of which all manipulations of values of that type will be expressed, and then to use only those operations in manipulating the data.

We can envision the structure of the rational number system as a series of layers.

```
Rational numbers in the problem domain
   add_rat mul_rat eq_rat
Rational numbers as numerators & denominators
   make_rat numer denom
Rational numbers as tuples
   tuple getitem
```

However tuples are implemented in Python

The horizontal lines represent abstraction barriers that isolate different levels of the system. At each level, the barrier separates the functions (above) that use the data abstraction from the functions (below) that implement the data abstraction. Programs that use rational numbers manipulate them solely in terms of the their arithmetic functions: `add_rat`, `mul_rat`, and `eq_rat`. These, in turn, are implemented solely in terms of the constructor and selectors `make_rat`, `numer`, and `denom`, which themselves are implemented in terms of tuples. The details of how tuples are implemented are irrelevant to the rest of the layers as long as tuples enable the implementation of the selectors and constructor.

At each layer, the functions within the box enforce the abstraction boundary because they are the only functions that depend upon both the representation above them (by their use) and the implementation below them (by their definitions). In this way, abstraction barriers are expressed as sets of functions.

Abstraction barriers provide many advantages. One advantage is that they makes programs much easier to maintain and to modify. The fewer functions that depend on a particular representation, the fewer changes are required when one wants to change that representation.

2.2.4 The Properties of Data

We began the rational-number implementation by implementing arithmetic operations in terms of three unspecified functions: `make_rat`, `numer`, and `denom`. At that point, we could think of the operations as being defined in terms of data objects --- numerators, denominators, and rational numbers --- whose behavior was specified by the latter three functions.

But what exactly is meant by data? It is not enough to say “whatever is implemented by the given selectors and constructors.” We need to guarantee that these functions together specify the right behavior. That is, if we construct a rational number \(x \) from integers \(n \) and \(d \), then it should be the case that \(\text{numer}(x)/\text{denom}(x) \) is equal to \(n/d \).

In general, we can think of an abstract data type as defined by some collection of selectors and constructors, together with some behavior conditions. As long as the behavior conditions are met (such as the division property above), these functions constitute a valid representation of the data type.

This point of view can be applied to other data types as well, such as the two-element tuple that we used in order to implement rational numbers. We never actually said much about what a tuple was, only that the language supplied operators to create and manipulate tuples. We can now describe the behavior conditions of two-element tuples, also called pairs, that are relevant to the problem of representing rational numbers.
To implement rational numbers, we needed a glue for two integers, which had the following behavior:

- If a pair p was constructed from values x and y, then $\text{getitem_pair}(p, 0)$ returns x, and $\text{getitem_pair}(p, 1)$ returns y.

We can implement functions make_pair and getitem_pair that fulfill this description just as well as a tuple.

```python
>>> def make_pair(x, y):
    """Return a function that behaves like a pair."
    def dispatch(m):
        if m == 0:
            return x
        elif m == 1:
            return y
        return dispatch
    return dispatch

>>> def getitem_pair(p, i):
    """Return the element at index i of pair p.""
    return p(i)
```

With this implementation, we can create and manipulate pairs.

```python
>>> p = make_pair(1, 2)
>>> getitem_pair(p, 0)
1
>>> getitem_pair(p, 1)
2
```

This use of functions corresponds to nothing like our intuitive notion of what data should be. Nevertheless, these functions suffice to represent compound data in our programs.

The subtle point to notice is that the value returned by make_pair is a function called dispatch, which takes an argument m and returns either x or y. Then, getitem_pair calls this function to retrieve the appropriate value. We will return to the topic of dispatch functions in the next chapter.

The point of exhibiting the functional representation of a pair is not that Python actually works this way (tuples are implemented more directly, for efficiency reasons) but that it could work this way. The functional representation, although obscure, is a perfectly adequate way to represent pairs, since it fulfills the only conditions that pairs need to fulfill. This example also demonstrates that the ability to manipulate functions as values automatically provides us the ability to represent compound data.

2.3 Sequences

A sequence is an ordered collection of data values. Unlike a pair, which has exactly two elements, a sequence can have an arbitrary (but finite) number of ordered elements.

The sequence is a powerful, fundamental abstraction in computer science. For example, if we have sequences, we can list every student at Berkeley, or every university in the world, or every student in every university. We can list every class ever taken, every assignment ever completed, every grade ever received. The sequence abstraction enables the thousands of data-driven programs that impact our lives every day.

A sequence is not a particular abstract data type, but instead a collection of behaviors that different types share. That is, there are many kinds of sequences, but they all share certain properties. In particular,

- **Length.** A sequence has a finite length.

- **Element selection.** A sequence has an element corresponding to any non-negative integer index less than its length, starting at 0 for the first element.

Unlike an abstract data type, we have not stated how to construct a sequence. The sequence abstraction is a collection of behaviors that does not fully specify a type (i.e., with constructors and selectors), but may be shared among several types. Sequences provide a layer of abstraction that may hide the details of exactly which sequence type is being manipulated by a particular program.

In this section, we introduce built-in Python types that can implement the sequence abstraction. We then develop a variety of abstract data types that can also implement the same abstraction.
2.3.1 Tuples Again

The tuple type that we were introduced to is itself a full sequence type. Tuples provide substantially more functionality than the pair abstract data type that we implemented functionally.

Tuples can have arbitrary length, and they exhibit the two principal behaviors of the sequence abstraction: length and element selection. Below, digits is a tuple with four elements.

```python
>>> digits = (1, 8, 2, 8)
>>> len(digits)
4
>>> digits[3]
8
```

Additionally, tuples can be added together and multiplied by integers. For tuples, addition and multiplication do not add or multiply elements, but instead combine and replicate the tuples themselves. That is, the add function in the operator module (and the + operator) returns a new tuple that is the concatenation of the added arguments. The mul function in operator (and the * operator) can take an integer k and a tuple and return a new tuple that consists of k copies of the tuple argument.

```python
>>> (2, 7) + digits * 2
(2, 7, 1, 8, 2, 8, 1, 8, 2, 8)
```

Mapping. A powerful method of transforming one tuple into another is by applying a function to each element and collecting the results. This general form of computation is called mapping a function over a sequence, and corresponds to the built-in function map. The result of map is an object that is not itself a sequence, but can be converted into a sequence by calling tuple, the constructor function for tuples.

```python
>>> alternates = (-1, 2, -3, 4, -5)
>>> tuple(map(abs, alternates))
(1, 2, 3, 4, 5)
```

The map function is important because it relies on the sequence abstraction: we do not need to be concerned about the structure of the underlying tuple; only that we can access each one of its elements individually in order to pass it as an argument to the mapped function (abs, in this case).

2.3.2 Sequence Iteration

Mapping is itself an instance of a general pattern of computation: iterating over all elements in a sequence. To map a function over a sequence, we do not just select a particular element, but each element in turn. This pattern is so common that Python has an additional control statement to process sequential data: the for statement.

Consider the problem of counting how many times a value appears in a sequence. We can implement a function to compute this count using a while loop.

```python
>>> def count(s, value):
...     """Count the number of occurrences of value in sequence s."""
...     total, index = 0, 0
...     while index < len(s):
...         if s[index] == value:
...             total = total + 1
...             index = index + 1
...     return total

>>> count(digits, 8)
2
```

The Python for statement can simplify this function body by iterating over the element values directly, without introducing the name index at all. For example (pun intended), we can write:
```python
>>> def count(s, value):
    """Count the number of occurrences of value in sequence s."""
    total = 0
    for elem in s:
        if elem == value:
            total = total + 1
    return total

>>> count(digits, 8)
2

A for statement consists of a single clause with the form:

for <name> in <expression>:
    <suite>

A for statement is executed by the following procedure:

1. Evaluate the header <expression>, which must yield an iterable value.
2. For each element value in that sequence, in order:
   A. Bind <name> to that value in the local environment.
   B. Execute the <suite>.

Step 1 refers to an iterable value. Sequences are iterable, and their elements are considered in their sequential order. Python does include other iterable types, but we will focus on sequences for now; the general definition of the term “iterable” appears in the section on iterators in Chapter 4.

An important consequence of this evaluation procedure is that <name> will be bound to the last element of the sequence after the for statement is executed. The for loop introduces yet another way in which the local environment can be updated by a statement.

**Sequence unpacking.** A common pattern in programs is to have a sequence of elements that are themselves sequences, but all of a fixed length. For statements may include multiple names in their header to “unpack” each element sequence into its respective elements. For example, we may have a sequence of pairs (that is, two-element tuples),

```python
>>> pairs = ((1, 2), (2, 2), (2, 3), (4, 4))
```

and wish to find the number of pairs that have the same first and second element.

```python
>>> same_count = 0
```

The following for statement with two names in its header will bind each name x and y to the first and second elements in each pair, respectively.

```python
>>> for x, y in pairs:
 if x == y:
 same_count = same_count + 1
```

```python
>>> same_count
2
```

This pattern of binding multiple names to multiple values in a fixed-length sequence is called sequence unpacking; it is the same pattern that we see in assignment statements that bind multiple names to multiple values.

**Ranges.** A range is another built-in type of sequence in Python, which represents a range of integers. Ranges are created with the range function, which takes two integer arguments: the first number and one beyond the last number in the desired range.

```python
>>> range(1, 10) # Includes 1, but not 10
range(1, 10)
```
Calling the \texttt{tuple} constructor on a range will create a tuple with the same elements as the range, so that the elements can be easily inspected.

\[
\texttt{>>> tuple(range(5, 8))}
\]

(5, 6, 7)

If only one argument is given, it is interpreted as one beyond the last value for a range that starts at 0.

\[
\texttt{>>> tuple(range(4))}
\]

(0, 1, 2, 3)

Ranges commonly appear as the expression in a \texttt{for} header to specify the number of times that the suite should be executed:

\[
\texttt{>>> total = 0}
\]

\[
\texttt{>>> for k in range(5, 8):}
\]

\[
\texttt{total = total + k}
\]

\[
\texttt{>>> total}
\]

18

A common convention is to use a single underscore character for the name in the \texttt{for} header if the name is unused in the suite:

\[
\texttt{>>> for \_ in range(3):}
\]

\[
\texttt{print(‘Go Bears!’)}
\]

Go Bears!
Go Bears!
Go Bears!

Note that an underscore is just another name in the environment as far as the interpreter is concerned, but has a conventional meaning among programmers that indicates the name will not appear in any expressions.

\subsection*{2.3.3 Sequence Abstraction}

We have now introduced two types of native data types that implement the sequence abstraction: tuples and ranges. Both satisfy the conditions with which we began this section: length and element selection. Python includes two more behaviors of sequence types that extend the sequence abstraction.

\textbf{Membership.} A value can be tested for membership in a sequence. Python has two operators \texttt{in} and \texttt{not in} that evaluate to \texttt{True} or \texttt{False} depending on whether an element appears in a sequence.

\[
\texttt{>>> digits}
\]

(1, 8, 2, 8)

\[
\texttt{>>> 2 in digits}
\]

True

\[
\texttt{>>> 1828 not in digits}
\]

True

All sequences also have methods called \texttt{index}, which return the index of a value in a sequence, and \texttt{count}, which returns the count of a value in a sequence.

\[
\texttt{>>> digits.index(2)}
\]

2

\[
\texttt{>>> digits.count(8)}
\]

2

\textbf{Slicing.} Sequences contain smaller sequences within them. We observed this property when developing our nested pairs implementation, which decomposed a sequence into its first element and the rest. A \texttt{slice} of a sequence is any span of the original sequence, designated by a pair of integers. As with the \texttt{range} constructor, the first integer indicates the starting index of the slice and the second indicates one beyond the ending index.
In Python, sequence slicing is expressed similarly to element selection, using square brackets. A colon separates the starting and ending indices. Any bound that is omitted is assumed to be an extreme value: 0 for the starting index, and the length of the sequence for the ending index.

```python
>>> digits[0:2]
(1, 8)
>>> digits[1:]
(8, 2)
>>> digits[:3]
(1, 8, 2)
```

Enumerating these additional behaviors of the Python sequence abstraction gives us an opportunity to reflect upon what constitutes a useful data abstraction in general. The richness of an abstraction (that is, how many behaviors it includes) has consequences. For users of an abstraction, additional behaviors can be helpful. On the other hand, satisfying the requirements of a rich abstraction with a new data type can be challenging. To ensure that our implementations of other abstract data types support these additional behaviors would require some work. Another negative consequence of rich abstractions is that they take longer for users to learn.

Sequences have a rich abstraction because they are so ubiquitous in computing that learning a few complex behaviors is justified. In general, most user-defined abstractions should be kept as simple as possible.

**Further reading.** Slice notation admits a variety of special cases, such as negative starting values, ending values, and step sizes. A complete description appears in the subsection called slicing a list in *Dive Into Python 3*. In this chapter, we will only use the basic features described above.

### 2.3.4 Strings

Text values are perhaps more fundamental to computer science than even numbers. As a case in point, Python programs are written and stored as text. The native data type for text in Python is called a string, and corresponds to the constructor `str`.

There are many details of how strings are represented, expressed, and manipulated in Python. Strings are another example of a rich abstraction, one which requires a substantial commitment on the part of the programmer to master. This section serves as a condensed introduction to essential string behaviors.

String literals can express arbitrary text, surrounded by either single or double quotation marks. However, the string must be surrounded by the same kind of quotation marks: if you start the string with a single quotation mark, you must end it with a single quotation mark. This allows us to have apostrophes within strings, as shown below.

```
>>> 'I am a string!

'I am a string!

>>> "I’ve got an apostrophe"

"I’ve got an apostrophe"

>>> '??'

'??'
```

We have seen strings already in our code, as docstrings, in calls to `print`, and as error messages in `assert` statements.

Strings satisfy the two basic conditions of a sequence that we introduced at the beginning of this section: they have a length and they support element selection.

```
>>> city = 'Berkeley'
>>> len(city)
8
>>> city[3]
'k'
```

The elements of a string are themselves strings that have only a single character. A character is any single letter of the alphabet, punctuation mark, or other symbol. Unlike many other programming languages, Python does not have a separate character type; any text is a string, and strings that represent single characters have a length of 1.

Like tuples, strings can also be combined via addition and multiplication.
Membership. The behavior of strings diverges from other sequence types in Python. The string abstraction does not conform to the full sequence abstraction that we described for tuples and ranges. In particular, the membership operator in applies to strings, but has an entirely different behavior than when it is applied to sequences. It matches substrings rather than elements.

```python
>>> 'here' in "Where's Waldo?"
True
```

Likewise, the count and index methods on strings take substrings as arguments, rather than single-character elements. The behavior of count is particularly nuanced; it counts the number of non-overlapping occurrences of a substring in a string.

```python
>>> 'Mississippi'.count('i')
4
>>> 'Mississippi'.count('issi')
1
```

Multiline Literals. Strings aren’t limited to a single line. Triple quotes delimit string literals that span multiple lines. We have used this triple quoting extensively already for docstrings.

```python
>>> """The Zen of Python
claims, Readability counts.
Read more: import this."""
'The Zen of Python\nclaims, "Readability counts."
Read more: import this.'
```

In the printed result above, the \n (pronounced “backslash en”) is a single element that represents a new line. Although it appears as two characters (backslash and “n”), it is considered a single character for the purposes of length and element selection.

String Coercion. A string can be created from any object in Python by calling the str constructor function with an object value as its argument. This feature of strings is useful for constructing descriptive strings from objects of various types.

```python
>>> str(2) + ' is an element of ' + str(digits)
'2 is an element of (1, 8, 2, 8)'
```

The mechanism by which a single str function can apply to any type of argument and return an appropriate value is the subject of the later section on generic functions.

Methods. The behavior of strings in Python is extremely productive because of a rich set of methods for returning string variants and searching for contents. A few of these methods are introduced below by example.

```python
>>> '1234'.isnumeric()
True
>>> 'rOBERT dE nIRO'.swapcase()
'Robert De Niro'
>>> 'snakeyes'.upper().endswith('YES')
True
```

Further reading. Encoding text in computers is a complex topic. In this chapter, we will abstract away the details of how strings are represented. However, for many applications, the particular details of how strings are encoded by computers is essential knowledge. Sections 4.1-4.3 of Dive Into Python 3 provides a description of character encodings and Unicode.
2.3.5 Conventional Interfaces

In working with compound data, we’ve stressed how data abstraction permits us to design programs without becoming enmeshed in the details of data representations, and how abstraction preserves for us the flexibility to experiment with alternative representations. In this section, we introduce another powerful design principle for working with data structures --- the use of conventional interfaces.

A conventional interface is a data format that is shared across many modular components, which can be mixed and matched to perform data processing. For example, if we have several functions that all take a sequence as an argument and return a sequence as a value, then we can apply each to the output of the next in any order we choose. In this way, we can create a complex process by chaining together a pipeline of functions, each of which is simple and focused.

This section has a dual purpose: to introduce the idea of organizing a program around a conventional interface, and to demonstrate examples of modular sequence processing.

Consider these two problems, which appear at first to be related only in their use of sequences:

1. Sum the even members of the first \( n \) Fibonacci numbers.

2. List the letters in the acronym for a name, which includes the first letter of each capitalized word.

These problems are related because they can be decomposed into simple operations that take sequences as input and yield sequences as output. Moreover, those operations are instances of general methods of computation over sequences. Let’s consider the first problem. It can be decomposed into the following steps, reading from left to right, where the output of one step is the input to the next step:

![Diagram showing sequence processing](image)

The `fib` function below computes Fibonacci numbers, now updated from the definition in Chapter 1 with a `for` statement and a `range`:

```python
>>> def fib(k):
 """Compute the kth Fibonacci number.""
 prev, curr = 1, 0 # curr is the first Fibonacci number.
 for _ in range(k - 1):
 prev, curr = curr, prev + curr
 return curr
```

and a predicate `iseven` can be defined using the integer remainder operator, \( \% \).

```python
>>> def iseven(n):
 return n % 2 == 0
```

The functions `map` and `filter` are operations on sequences. We have already encountered `map`, which applies a function to each element in a sequence and collects the results. The `filter` function takes a sequence and returns those elements of a sequence for which a predicate is true. Both of these functions return intermediate objects, `map` and `filter` objects, which are iterable objects that can be converted into tuples or summed.

```python
>>> nums = (5, 6, -7, -8, 9)
>>> tuple(filter(iseven, nums))
(6, -8)
>>> sum(map(abs, nums))
35
```
Now we can implement even_fib, the solution to our first problem, in terms of \texttt{map}, \texttt{filter}, and \texttt{sum}.

```python
>>> def sum_even_fibs(n):
 """Sum the first n even Fibonacci numbers.""
 return sum(filter(iseven, map(fib, range(1, n+1))))

>>> sum_even_fibs(20)
3382
```

Now, let’s consider the second problem. It can also be decomposed as a pipeline of sequence operations that include \texttt{map} and \texttt{filter}:

The words in a string can be enumerated via the \texttt{split} method of a string object, which by default splits on spaces.

```python
>>> tuple('Spaces between words'.split())
('Spaces', 'between', 'words')
```

The first letter of a word can be retrieved using the selection operator, and a predicate that determines if a word is capitalized can be defined using the built-in predicate \texttt{isupper}.

```python
>>> def first(s):
 return s[0]

>>> def iscap(s):
 return len(s) > 0 and s[0].isupper()
```

At this point, our acronym function can be defined via \texttt{map} and \texttt{filter}.

```python
>>> def acronym(name):
 """Return a tuple of the letters that form the acronym for name.""
 return tuple(map(first, filter(iscap, name.split())))

>>> acronym('University of California Berkeley Undergraduate Graphics Group')
('U', 'C', 'B', 'U', 'G', 'G')
```

These similar solutions to rather different problems show how to combine general components that operate on the conventional interface of a sequence using the general computational patterns of mapping, filtering, and accumulation. The sequence abstraction allows us to specify these solutions concisely.

Expressing programs as sequence operations helps us design programs that are modular. That is, our designs are constructed by combining relatively independent pieces, each of which transforms a sequence. In general, we can encourage modular design by providing a library of standard components together with a conventional interface for connecting the components in flexible ways.

**Generator expressions.** The Python language includes a second approach to processing sequences, called \textit{generator expressions}, which provide similar functionality to \texttt{map} and \texttt{filter}, but may require fewer function definitions.

Generator expressions combine the ideas of filtering and mapping together into a single expression type with the following form:
To evaluate a generator expression, Python evaluates the <sequence expression>, which must return an iterable value. Then, for each element in order, the element value is bound to <name>, the <filter expression> is evaluated, and if it yields a true value, the <map expression> is evaluated.

The result value of evaluating a generator expression is itself an iterable value. Accumulation functions like `tuple`, `sum`, `max`, and `min` can take this returned object as an argument.

```python
>>> def acronym(name):
 return tuple(w[0] for w in name.split() if iscap(w))

>>> def sum_even_fibs(n):
 return sum(fib(k) for k in range(1, n+1) if fib(k) % 2 == 0)
```

Generator expressions are specialized syntax that utilizes the conventional interface of iterable values, such as sequences. These expressions subsume most of the functionality of `map` and `filter`, but avoid actually creating the function values that are applied (or, incidentally, creating the environment frames required to apply those functions).

Reduce. In our examples we used specific functions to accumulate results, either `tuple` or `sum`. Functional programming languages (including Python) include general higher-order accumulators that go by various names. Python includes `reduce` in the `functools` module, which applies a two-argument function cumulatively to the elements of a sequence from left to right, to reduce a sequence to a value. The following expression computes 5 factorial.

```python
>>> from operator import mul
>>> from functools import reduce
>>> reduce(mul, (1, 2, 3, 4, 5))
120
```

Using this more general form of accumulation, we can also compute the product of even Fibonacci numbers, in addition to the sum, using sequences as a conventional interface.

```python
>>> def product_even_fibs(n):
 """Return the product of the first n even Fibonacci numbers, except 0."""
 return reduce(mul, filter(iseven, map(fib, range(2, n+1))))

>>> product_even_fibs(20)
123476336640
```

The combination of higher order procedures corresponding to `map`, `filter`, and `reduce` will appear again in Chapter 4, when we consider methods for distributing computation across multiple computers.

### 2.4 Immutable Data Structures

The native data types we have introduced so far --- numbers, Booleans, tuples, ranges, and strings --- are all types of immutable objects. While names may change bindings to different values in the environment during the course of execution, the values themselves do not change. It is hence impossible to change or reassign the values of these objects:

```python
>>> 3 = 4
SyntaxError: can’t assign to literal
>>> my_string = "Berkeley"
>>> my_string[0] = "C"
TypeError: 'str' object does not support item assignment
>>> my_triplet = (1, 2, 3)
>>> my_triplet[0] = 3
TypeError: 'tuple' object does not support item assignment
```
To change the values of these objects, we would need to construct a new object with the new values. Incidentally, this is why `map`, `filter`, and `reduce` return new objects: under the hood, they extract the values from the argument tuple, and construct a new object with new values. In the case of `map`, the new values are the results of applying the argument function to the values in the argument tuple.

In this section, we will introduce a collection of other immutable abstract data types, each of which are useful in different situations.

### 2.4.1 Nested Pairs

For rational numbers, we paired together two integer objects using a two-element tuple, then showed that we could implement pairs just as well using functions. In that case, the elements of each pair we constructed were integers. However, like expressions, tuples can nest within each other. Either element of a pair can itself be a pair, a property that holds true for either method of implementing a pair that we have seen: as a tuple or as a dispatch function.

A standard way to visualize a pair --- in this case, the pair `(1, 2)` --- is called box-and-pointer notation. Each value, compound or primitive, is depicted as a pointer to a box. The box for a primitive value contains a representation of that value. For example, the box for a number contains a numeral. The box for a pair is actually a double box: the left part contains (an arrow to) the first element of the pair and the right part contains the second.

![Box-and-Pointer Notation](image)

This Python expression for a nested tuple

```python
>>> ((1, 2), (3, 4))
((1, 2), (3, 4))
```

would have the following structure.

![Nested Tuple Structure](image)

Our ability to use tuples as the elements of other tuples provides a new means of combination in our programming language. We call the ability for tuples to nest in this way a closure property of the tuple data type. In general, a method for combining data values satisfies the closure property if the result of combination can itself be combined using the same method. Closure is the key to power in any means of combination because it permits us to create hierarchical structures --- structures made up of parts, which themselves are made up of parts, and so on. We will explore a range of hierarchical structures in Chapter 3. For now, we consider a particularly important structure.

### 2.4.2 Recursive Lists

We can use nested pairs to form lists of elements of arbitrary length, which will allow us to implement the sequence abstraction. The figure below illustrates the structure of the recursive representation of a four-element list: `1, 2, 3, 4`.

![Recursive List Structure](image)
The list is represented by a chain of pairs. The first element of each pair is an element in the list, while the second is a pair that represents the rest of the list. The second element of the final pair is the empty tuple, which indicates that the list has ended, and is represented by a box with a cross through it. We can construct this structure using a nested tuple literal:

```python
>>> (1, (2, (3, (4, ()))))
(1, (2, (3, (4, ()))))
```

This nested structure corresponds to a very useful way of thinking about sequences in general. A non-empty sequence can be decomposed into:
- its first element, and
- the rest of the sequence.

The rest of a sequence is itself a (possibly empty) sequence. We call this view of sequences recursive, because sequences contain other sequences as their second component.

Since our list representation is immutable and recursive, we will call it an IRList in our implementation, so as not to confuse it with the built-in `list` type in Python that we will introduce later in this chapter. A recursive list can be constructed from a first element and the rest of the list. The empty tuple represents an empty recursive list.

```python
>>> empty_rlist = ()
>>> def make_irlist(first, rest=empty_irlist):
... """Make a recursive list from its first element and the rest (the empty immutable recursive list, by default)."""
... return (first, rest)

>>> def irlist_first(irlist):
... """Return the first element of the immutable recursive list irlist."""
... return irlist[0]

>>> def irlist_rest(irlist):
... """Return the rest of the elements of the immutable recursive list irlist."""
... return irlist[1]
```

These two selectors, one constructor, and one constant together implement the recursive list abstract data type. The single behavior condition for a recursive list is that, like a pair, its constructor and selectors are inverse functions.

- If a recursive list \( s \) was constructed from element \( f \) and list \( r \), then \( \text{irlist\_first}(s) \) returns \( f \), and \( \text{irlist\_rest}(s) \) returns \( r \).

We can use the constructor and selectors to manipulate recursive lists.

```python
>>> counts = make_irlist(1, make_irlist(2, make_irlist(3, make_irlist(4, empty_irlist))))
>>> irlist_first(counts)
1
>>> irlist_rest(counts)
(2, (3, (4, ())))
```

The recursive list can store a sequence of values in order, but it does not yet implement the sequence abstraction. Using the abstract data type we have defined, we can implement the two behaviors that characterize a sequence: length and element selection.
>>> def irlist_len(irlist):
    """Return the length of irlist."""
    if irlist == empty_irlist:
        return 0
    return 1 + irlist_len(irlist_rest(irlist))

>>> def irlist_select(irlist, index):
    """Return an item at the position index in irlist."""
    if index == 0:
        return irlist_first(irlist)
    return irlist_select(irlist_rest(irlist), index - 1)

Now, we can manipulate a recursive list as a sequence:

>>> irlist_len(counts)
4
>>> irlist_select(counts, 1) # The second item has index 1.
2

Both of these implementations are recursive: Since IRLists are defined recursively, it seems natural to consider
a recursive implementation of any function that operates on them. Each recursive call peels away each layer of
the nested pair until the end of the list (in irlist_len) or the desired element (in irlist_select) is reached.

Here is another example of a function that operates recursively on a recursive list: We will define the function
irlist_map, similar to the map function that we saw from before, which takes in a recursive list and a function
to apply on the elements in the recursive list, and then returns a new recursive list that contains the results of
applying the function on the elements in the original list. Notice that we have to construct a new recursive list
since the original list is immutable, a property that the underlying tuple representation ensures.

>>> def irlist_map(func, irlist):
    if irlist == empty_irlist:
        return empty_irlist
    first = irlist_first(irlist)
    return make_irlist(func(first), irlist_map(func, irlist_rest(irlist)))

>>> my_irlist = make_irlist(1, make_irlist(2, make_irlist(3, make_irlist(4, empty_irlist))))
"""<1, 2, 3, 4>"

The above implementation first considers the simplest possible input, which is the empty recursive list. The
result, in this case, is also the empty recursive list. However, if the list is not empty, then the function is called
recursively on a shorter suffix that ignores the first element of the list. Assuming, as we do when thinking recur-
sively, that this function call returns the correct result, we construct a new list whose first element is the result of
applying the function to the first element of the original list; the rest of this new list is the result of the recursive
call.

This example demonstrates a common pattern of computation with recursive lists, where each recursive call
operates on an increasingly shorter suffix of the original list. This incremental processing to find the length and
elements of a recursive list does take some time to compute. Python’s built-in sequence types are implemented in
a different way that does not have a large computational cost for computing the length of a sequence or retrieving
its elements.

This example also introduces the new function irlist_str, which displays the contents of the recursive list.
We use the angle brackets (< and >) to remind ourselves that the sequence is an immutable recursive list, and also
that the implementation of the immutable recursive list is irrelevant to the functions that work with and operate on
recursive lists. Recall that we were able to represent pairs using functions, and therefore we can represent recursive
lists using functions as well, instead of using tuples. In both cases --- if the recursive list were represented using
either tuples or functions --- we need only interact with the constructors and selectors, illustrating the power of
data abstraction and the ability to separate implementation from usage.

The function irlist_str is defined here, as are other useful utility functions for working with recursive
lists.
2.4.3 Dictionaries

Elements in IRLists and tuples are indexed by numbers. However, in many common situations, we would like to use more descriptive keys as our indices, especially when storing and manipulating correspondence relationships. The immutable dictionary (or IDict) allows us to use indices that are not necessarily numbers. For example, the following dictionary gives the values of various Roman numerals:

```python
>>> numerals = make_idict(('I', 1), ('V', 5), ('X', 10))
```

The argument to the make_idict constructor function is a tuple of tuples, each of which is a key-value pair that maps a Roman numeral (a key) to its corresponding decimal number (a value). numerals is now a dictionary that maintains these key-value relationships, where both the keys and values are objects. The purpose of a dictionary is to provide an abstraction for storing and retrieving values that are indexed not by consecutive integers, but by descriptive keys. Strings commonly serve as keys, because strings are our conventional representation for names of things.

We can look up values by their keys using the idict_select function:

```python
>>> idict_select(numerals, 'X')
10
```

If the key does not exist, the function returns None:

```python
>>> idict_select(numerals, 'L')
```

No output is shown since the Python interpreter knows not to show the value None.

A dictionary can have at most one value for each key. Adding new key-value pairs and changing the existing value for a key can both be achieved using the idict_insert function, which returns the updated dictionary:

```python
>>> numerals = idict_insert(numerals, 'L', 50)
>>> idict_str(numerals)
"('V' -> 5, 'X' -> 10, 'I' -> 1, 'L' -> 50)"
>>> numerals = idict_insert(numerals, 'I', 1)
>>> idict_str(numerals)
"('V' -> 5, 'X' -> 10, 'L' -> 50, 'I' -> 1)"
```

The idict_str function returns the contents of the dictionary as a string that shows the key and its corresponding value. The important thing to note from the output is that dictionaries, unlike the lexicographic product, are unordered collections of key-value pairs. When we print a dictionary, the keys and values are rendered in some order, but as users, we cannot predict what that order will be.

The dictionary abstraction also supports various methods of iterating of the contents of the dictionary as a whole. The methods idict_keys, idict_values and idict_items all return iterable values.

```python
>>> idict_keys(numerals)
('V', 'X', 'L', 'I')
>>> idict_values(numerals)
(5, 10, 50, 1)
>>> sum(idict_values(numerals))
66
>>> idict_items(numerals)
(('V', 5), ('X', 10), ('L', 50), ('I', 1))
```

Dictionaries do have some restrictions:

- A key of a dictionary cannot be an object of a mutable built-in type.
- There can be at most one value for a given key.

This first restriction is tied to the underlying implementation of dictionaries. The details of this implementation are not a topic of this course. Intuitively, consider that the key tells Python where to find that key-value pair in memory; if the key changes, the location of the pair may be lost.

The second restriction is a consequence of the dictionary abstraction, which is designed to store and retrieve values for keys. We can only retrieve the value for a key if at most one such value exists in the dictionary.

The immutable dictionary ADT is defined here, as are useful utility functions for working with dictionaries.
2.4.4 Hierarchical Structures

Hierarchical structures result from the closure property of different data types, which asserts, for example, that tuples can contain other tuples. For instance, consider this nested representation of the numbers 1 through 4.

```python
>>> ((1, 2), 3, 4)
((1, 2), 3, 4)
```

This tuple is a sequence of length three, of which the first element is itself a tuple. A box-and-pointer diagram of this nested structure shows that it can also be thought of as a tree with four leaves, each of which is a number.

Like IRLists, this definition of a tree is naturally recursive. In a tree, each subtree is itself a tree. As a base case, any bare element that is not a tuple is itself a simple tree, but one with no branches and children. That is, the numbers are all trees, as is the pair \((1, 2)\) and the structure as a whole.

For now, we will call these trees that only have items at the leaves **deep tuples**, since the term tree is usually reserved for a different structure we will see later in a moment.

2.4.4.1 Tree Terminology

Before we start playing with deep tuples, we will go over a few terms employed when talking about trees. In computer science, the idea of a tree data structure is extremely common. Since these structures are so common and can become quite complex, there are a variety of terms computer scientists use when talking about trees.

Each element inside a tree is called a **node** and the connections in a tree are called the **branches**. We call the node at the very top of the tree the **root** and we call the bottommost nodes of the tree the **leaves**. By definition, the leaves do not have any children.

We call all the nodes that we can reach by repeatedly following branches up from a given node the **ancestors** of that node. The node that is immediately above another node is designated its **parent**. Similarly, all of the nodes that can be reached by repeatedly following branches down from a given node are called the **descendants** of that node. The nodes that are immediately below a given node are called the **children** of that node. All nodes that share the same parent node are called **siblings**.

2.4.4.2 Manipulating Deep Tuples

Recursion is a natural tool for dealing with hierarchical data structures, since we can often reduce operations on them to operations on their branches, which reduce in turn to operations on the branches of the branches, and so on, until we reach the leaves of the data structure. As an example, we can implement a **count_items** function, which returns the total number of items in a deep tuple.

```python
>>> def count_items(deep_tup):
... if type(deep_tup) != tuple:
... return 1
... return sum(map(count_items, deep_tup))
```

```python
>>> dt = ((1, 2), 3, 4)
>>> count_items(dt)
4
>>> big_deep_tup = ((dt, dt), 5)
>>> big_deep_tup
```

19
The structure of the `count_items` function reveals a general strategy for working with deep tuples. As with any recursive function, we consider our possible base cases: the simplest inputs for which we know an answer. Here, a possible simplest input is one that is not a tuple. Assuming the input to the function was initially valid, this case only arises when we have recursed all the way down to the items of the tuple, which is what we set out to count. In this case then, the answer is 1.

The other possible input is a deep tuple, whose elements can also be tuples themselves. We want to know how many items are present in each of the possible tuples that are elements of the deep tuple, and these tuples can themselves be arbitrarily deep tuples. Is there a function that allows us to find the number of items in each of the possible tuples? Why yes, `count_items` itself! As with other problems involving recursion, it might seem odd to think about using a function as we are writing it, but the key here is to trust that the recursive calls to `count_items` will provide the answer that we want. Along the way, we are recursing on increasingly smaller parts of the original deep tuple, making progress towards the base case.

Notice that in the definition of `count_items`, we are using the built-in Python function `map` to apply the function to each element of the input. The result is a sequence of numbers that denote how many items are present in each element. The `sum` function then adds all of these numbers to obtain the total number of items in the deep tuple.

Just as `map` is a powerful tool for dealing with sequences, mapping and recursion together provide a powerful and general form of computation for manipulating hierarchical structures. For instance, we can square all items of a deep tuple using a higher order recursive function `deep_map`, which is structured similarly to `count_items`.

```python
>>> def deep_map(deep_tup, fn):
... if type(deep_tup) != tuple:
... return fn(deep_tup)
... return tuple(deep_map(branch, fn) for branch in deep_tup)

>>> deep_map(big_deep_tup, square)
((((1, 4), 9, 16), ((1, 4), 9, 16)), 25)
```

### 2.4.4.3 Trees with Internal Values

The deep tuples described above were examples of tree-structured data that only have values at the leaves. Another common representation of tree-structured data has values for the internal nodes of the tree as well.

To demonstrate this alternative tree data structure, we have created the ITree abstract data type, named because it is an immutable tree data structure. An ITree is composed of a single data element at that node, called the ITree’s datum, and a list of ITrees that exist below the datum, called the ITree’s children. Notice that we again have a recursive definition for our data structure: ITrees are constructed of data items and smaller ITrees.

Here is an example of an ITree that represents a hierarchy of places found in the United States:

```python
>>> us_tree = make_itree("United States",
 (make_itree("California",
 (make_itree("Los Angeles"),
 make_itree("San Francisco"),
 make_itree("Berkeley")),
 make_itree("New York",
 (make_itree("New York City"),
 make_itree("Ithaca"),
 make_itree("Buffalo"))),
 make_itree("Texas",
 (make_itree("Austin"),
 make_itree("San Antonio"),
 make_itree("Dallas"))))

>>> itree_datum(us_tree)
"United States"
```
As the example demonstrates, we have the make_itree constructor for ITrees, which takes a datum for the root of the ITree along with an optional tuple of children ITrees. Also, we have two selectors, itree_datum, which returns the datum at the root of the given ITree, and itree_children, which returns a tuple of the children of the given ITree, each of which is also an ITree.

Notice that, unlike IRLLists, there is no such thing as an “empty” ITree. This is because the notion of an “empty” tree is not typically very useful when working with tree data structures. Also, having an “empty” tree can often complicate code designed for working with trees. A corollary is therefore that the simplest ITree is one that has one datum but no children -- an ITree that is also a leaf.

We have also provided an itree_str function, which allows us to better visualize an ITree when printing it.

This function, along with the definition of the ITree ADT and other useful functions for working with ITrees, is available here.

2.4.4.4 Mutual Recursion and Manipulating ITrees

Like deep tuples, ITrees are usually manipulated using recursion. If we wanted to make a function similar to count_items for ITrees, called count_nodes, we could do the following:

```python
>>> from operator import add
>>> from functools import reduce
>>> def count_nodes(it):
 """Return the number of nodes in the ITree it."""
 return 1 + reduce(add, map(count_nodes, itree_children(it)), 0)

>>> count_nodes(us_tree)
13
```
Notice that we do not have a base case for this recursive function. This might seem strange at first, but it is easier to see why we do not need one if we rewrite the function without using reduce or map, and instead split the task into two functions, `itree_count_nodes` and `forest_count_nodes`. `itree_count_nodes` will count the number of nodes in an ITree, as before. `forest_count_nodes` will be a similar function that counts the number of nodes in a forest, which is the term used to refer to a group of trees.

```python
def itree_count_nodes(it):
 """Return the number of nodes in the ITree it."""
 return 1 + forest_count_nodes(itree_children(it))

def forest_count_nodes(f):
 """Return the number of nodes in the forest (a tuple of trees) f."""
 if len(f) == 0:
 return 0
 return itree_count_nodes(f[0]) + forest_count_nodes(f[1:])
```

Both of the functions are recursive because eventually, each function will call itself. (In the case of `itree_count_nodes`, it is indirectly done through `forest_count_nodes`.) Furthermore, these functions recursively call each other over and over! We call this mutual recursion, where functions repeatedly call each other recursively.

Now, we can ask ourselves again: where is the base case for `itree_count_nodes`? We know that the base case for the function, the case where we would not need to recurse again to find the answer, is when we have reached a leaf in the tree, where there are no more items below the current datum. In this situation, we see that `itree_count_nodes` will call `forest_count_nodes` with an empty tuple, which immediately reaches the base case of `forest_count_nodes` and returns 0. So, in the end, the base case of `itree_count_nodes` (and, similarly, `count_nodes`) was contained in another function, which handled processing the sequence of children for the tree.

Again, as in the case of deep tuples, we can define an `itree_map` function to generalize a common pattern for manipulating ITrees:

```python
def itree_map(fn, it):
 return make_itree(fn(itree_datum(it)),
 tuple(itree_map(fn, child) for child in itree_children(it)))
```

```python
test_tree = make_itree(1, (make_itree(2, (make_itree(3),
 make_itree(4))),(make_itree(5, (make_itree(6),
 make_itree(7))))))
```

```python
print(itree_str(test_tree))
1
 |
|+-2
| |
| |+-3
| | |
| |+-4
| |+5
| |+-6
| |+-7
```

```python
print(itree_str(itree_map(lambda x: x * x, test_tree)))
1
 |
```
2.4.4.5 Application: Binary Search Trees

One common use for trees is to create a data structure that allows users to search for items in a collection much quicker. The simplest way of finding an item in a collection is to simply scan through all of the elements in the collection. For example, here is the “basic” version of a search function for an IRList:

```python
>>> def contains(irl, item):
 """Returns True if item is a member of irl."""
 if irl == empty_irlist:
 return False
 return irlist_first(irl) == item or contains(irlist_rest(irl), item)
```

```python
>>> contains(irlist_populate(4, 2, 3, 5, 1), 2)
True
>>> contains(irlist_populate(4, 2, 3, 5, 1), 66)
False
```

This algorithm takes $O(n)$ time on average (where $n$ is the length of the input IRList) because either we will scan all $n$ items before concluding that the element is not in the IRList, or we will take enough steps to reach the item in the IRList, which, if we consider the location of an item to be uniformly distributed, is $n/2$ steps on average. Now, this might not seem like a terrible running time, but consider the fact that a large social network will probably have to find a user among millions in their system very frequently. It would be best for the social network to perform this very common operation as quickly as possible.

The simplest form of a tree that improves searching for an item is what we call a binary search tree. A binary search tree (BST) is a tree with the following properties:

- The tree has at most two children. We call one of these children the left child and the other the right child.
- All values in the left child are less than the root’s datum.
- All values in the right child are greater than the root’s datum.

Interestingly, unlike general trees, it is useful here to have the notion of an empty tree. We use this as a placeholder for children that are not used in a larger binary search tree. For instance, if there are no keys smaller than the datum at the root, then the left child is an empty tree.

Typically, though not always, we do not have duplicate values in a binary search tree, although it is not very hard to extend the implementation to account for duplicates (values that are equal to other values elsewhere in the tree).

We will now create a definition of an empty binary search tree, a constructor, and some selectors for a binary search tree (BST for short) abstract data type:

```python
>>> empty_bst = None
>>> def make_bst(datum, left=make_itree(None), right=make_itree(None)):
 """Create a BST with datum, left branch, and right branch.""
 return (left, datum, right)
```

23
>>> def bst_datum(bst):
    """Return the datum of BST b."""
    return bst[1]

>>> def bst_left(bst):
    """Return the left branch of BST b."""
    return bst[0]

>>> def bst_right(bst):
    """Return the right branch of BST b."""
    return bst[2]

Notice that this definition does not enforce the relative ordering on elements inside the binary tree. While we could have done this, we choose to simplify the code and avoid writing error-handling code.

Like ITrees, we have provided a method for printing a textual representation of BSTs:

>>> test_bst = make_bst(7,
    left=make_bst(3,
        left=make_bst(1,
            left=make_bst(0),
            right=make_bst(2)),
        right=make_bst(5,
            left=make_bst(4),
            right=make_bst(6))),
    right=make_bst(11,
        left=make_bst(9,
            left=make_bst(8),
            right=make_bst(10)),
        right=make_bst(13,
            left=make_bst(12),
            right=make_bst(14))))

>>> print(bst_str(test_bst))

  7
  |  
  +--3
  |    |
  |    |  
  |    |   +--1
  |    |     |
  |    |     |  
  |    |     |    +--0
  |    |     |
  |    |     |     +--2
  |    |
  |    |  
  |    |   +--5
  |    |
  |    |     +--4
  |    |
  |    |      +--6
  |
  |  
  |  +--11
  |
  |    +--9
  |
  |      +--8
  |
  |        +--10
  
  +--13

24
>>> test_bst2 = make_bst(2, left=make_bst(1))
>>> print(bst_str(test_bst2))
2
+-1
+--empty_bst

How does this help us with the problem of searching? It allows us to use an algorithm known as binary search. Here is an implementation of the algorithm that uses a binary search tree:

```python
>>> def bst_find(b, item):
 """Return True if item is in BST b and False otherwise."""
 if b == empty_bst:
 return False
 elif bst_datum(b) == item:
 return True
 elif bst_datum(b) > item:
 return bst_find(bst_left(b), item)
 return bst_find(bst_right(b), item)

>>> test_bst = make_bst(0,
 left=make_bst(-4,
 left=make_bst(-6,
 left=make_bst(-7),
 right=make_bst(-5)),
 right=make_bst(-2,
 left=make_bst(-3),
 right=make_bst(-1))),
 right=make_bst(4,
 left=make_bst(2,
 left=make_bst(1),
 right=make_bst(3)),
 right=make_bst(6,
 left=make_bst(5),
 right=make_bst(7))))

>>> bst_find(test_bst, 5)
True
>>> bst_find(test_bst, 22)
False
>>> bst_find(test_bst, 0.5)
False
>>> bst_find(test_bst, 1)
True
```

As the above implementation demonstrates, we take a BST and a single item and we check if that item is at the top of the tree. If the item is at the top, great! We have found the item and we return True. If we have nothing more to search (the tree was empty), we return False.

Otherwise, we must then search beyond the top of the tree. Now, if this were a general tree, we could just recursively search both children for the item, much the same as we would with IRLists, where we would just search the entire structure. However, we know some special information about BSTs that lets us avoid unnecessary work. Specifically, we know that if the item that we are looking for is larger than the item at the top, then we know that the item could not be in the left child of our tree, because the definition states that only items that are smaller than
the root’s datum exist in the left child. Similarly, if the item we are searching for is smaller than the root’s datum, then it could not be in the right child. This information allows us to skip searching half of the tree each time we recursively search through the children!

So, how long does it take to search using this algorithm? It depends on how many times we have to recursively search through the children. Suppose we have a BST that is well-balanced, which means that it is not lopsided and there are about just as many items to the right of the root as there are to the left. Then, each time we make a recursive call, we are cutting the size of the structure that we are searching through in about half. How many times, in the worst case, do we need to cut the search space in half? If there are \( n \) nodes in the tree, then assume that we need to cut the search space in half \( k \) times. This implies that to either get down to the node we are looking for, or to traverse the entire tree, the following equation must be true:

\[
\frac{n}{2^k} \approx 1
\]

Solving this, we find that \( k \approx \log_2(n) \). We conclude then that our algorithm takes \( O(\log(n)) \) time in this well-balanced case, where \( n \) is the number of items in the BST. Notice that we have dropped the base of the logarithm when we describe the order of growth of this algorithm: this is because logarithms of all bases are within constant factors of each other, thanks to the following relationship:

\[
\log_b(a) = \frac{\log_c(a)}{\log_c(b)}
\]

that allows us to convert from a logarithmic function of one base to a logarithmic function of another base, merely by multiplying a constant factor.

But what would the running time be if the BST is really lopsided, as in the example below?

```python
>>> lopsided = make_bst(6,
 left=make_bst(5,
 left=make_bst(4,
 left=make_bst(3))))

>>> print(bst_str(lopsided))
6
|+-5
| |+-4
| | |+-3
| | | |+-empty_bst
| | |+-empty_bst
| |+-empty_bst
|+-empty_bst
```

Then, we must still walk through every item in the tree! In this “unfortunate” case, we still take \( O(n) \) time. As you will see in more advanced courses, the trick is to come up with a way to ensure that the trees are balanced, every time an element is inserted or deleted from the tree. However, this is a topic beyond the scope of this course.